A guide to using Blockly
to simulate and program a
PICAXE microcontroller

T hﬂ I W —y T A - E@
Project » Edit ~ Sefings ~ PICAXE ~ Mode: | Blocks | Code Cloud~ Help English~
Simulator Blocks PICAXE BASIC Javascript XML v1.0.3
Output
c2 ¢ Input
C3 c.o :l Delays
e c7] LOO_DS
Variables
Ces ~ o8] Maths
|: v ;éa i :l Procedures
Clso = =7 Tasks tum output CED kD
Motors T e |
B.1 B& i use for ms
E :l Serial b @l
I: B2 BA :l Advanced
HEE B4[7]

© Copyright Revolution Education Ltd 1999-2016.

Copyright is waived in the following circumstances: a small number of copies may be made for
use in the purchaser’s school/college for use alongside PICAXE hardware.
These copies may not be sold or made available outside the purchaser’s school.

Overview

Blockly for PICAXE is a free powerful visual programming tool for generating PICAXE microcontroller
programs. By stacking coloured blocks on top of each other a control program can be rapidly
generated. This simple click’n’drag programming method allows students to rapidly develop control
sequences for real life microcontroller projects.

Blockly can be run in a web browser on almost any device that has an internet connection. For
offline use Blockly is embedded within PICAXE Editor and is also available as a standalone Chrome

app.
Blockly can be used in 3 different ways:
1) Within PE6 (PICAXE Editor 6) which is the main PICAXE programming environment (Windows)

2) As a standalone Chrome app (Windows/Mac/Linux/Chromebook)
3) On the www.picaxecloud.com website (any browser)

All 3 methods share exactly the same Blockly source code and so work in a similar way on all
platforms. However PE6 does contain a more powerful simulation engine.

The wide range of PICAXE specific blocks allows the user to control output devices, such as motors
and LEDs that are connected to the PICAXE microcontroller. We can switch devices on or off in
sequences using: timing, counting, repetition, and decisions based on signals from digital and
analogue sensors that are connected to the PICAXE microcontroller.

This section of the manual explains how the most common blocks are used, giving examples of the
common blocks and techniques in the context of possible school projects.

Quick Start

If you are unfamiliar with the program approach to building control systems, it is a good idea to
begin by familiarising yourself with the most commonly used blocks, which are: Outputs, Wait,
Motor and Inputs.

http://www.picaxecloud.com/

1. How to build, edit and test run a program

2. Outputs

This section shows: how to switch output devices and motors connected to outputs of a PICAXE
microcontroller, using Outputs, Motor, Sound and Play blocks; how the Serout block can be used to
output serial information from the PICAXE microcontroller.

3. Inputs

This section shows: how to check the state of digital sensors connected to a PICAXE microcontroller
using the input block; how to use the Interrupt block for instant response to digital sensors; how to
use the variable decision block to make use of readings from analogue sensors connected to a
PICAXE microcontroller, in a control system.

4. Delays

This section shows: how to created delays using pause and sleep

5. Procedures
This section shows the important technique of building a control system as a number of linked sub
systems.

6. Maths & Variables

This section shows: how to create counting systems using Increase and Decrease blocks; how timing
can be built into a control system; how Expressions and Random blocks are used to give a value to a
variable; how Read and Write blocks are used to store and access values of variables using the
PICAXE microcontroller’s EEPROM memory.

7. Advanced Blocks

This section shows: how to use some of the more advanced PICAXE command blocks.

Section 1. How to build, edit and simulate in Blockly
PE6 - Click the ‘New Blockly’ ribbon button.

App - Click Project > New

Web - Login and then click Project>New

The Blockly screen looks similar to:

e o P I W —y T - — E@g
Project + Edit ~ Seftings ~ PICAXE ~ Mode: | Blocks | Code Cloud~ Help English~
Simulator Blocks PICAXE BASIC Javascript XML v1.0.3
Output
c2 ¢ Input
c3 co[] Delays
e c7] —— y
I: o e :l Variables do | tum output G (KD
: g : Maths _ﬁ
R pause for | [EN[) | ms
|: A~ :l Procedures
Clso = =7 Tasks
I: B4 . :l Motors
' ' Serial
I: B2 BS :l Advanced
HEE B4[7]

Workspace - This is the right hand area where your program is created

Toolbox - This is the collection of available blocks to drag onto the stage

Simulation Panel —

This displays the animated simulation when the program is run ‘on-screen’, In PE6
the Simulation Panel looks slightly different, but performs the same task.

Selecting the correct PICAXE type

Before the progam is created the correct PICAXE microcontroller chip type and download cable COM
port should be selected.

PE6 — Use the Workspace Explorer App — Use the Settings menu

Workspace Explorer

& @8 0E@-

— S ——

=] Mew Warkspace
- PICAXE Type Project ~ Edit ~ Seftings + PICAXE =
-------- | PICAXE-2042 |
-------- Input /# Output T able Blocks PICAXE BASIC PICAXE type (08M2)
-------- Check Firmware Output Port (COM16)
- COM Port Input
Code editor setti
-------- COM7 £XE 027 PICAXE USE | Delays [stort RS
........ Test Cable LDO_DS Blockly settings
"""" COM Port Optiors Variables [show simulator
-------- Device Manager Maths
- Sirnulation Procedures] Online compile
Tasks
"""" | PICAAE -2 ﬂ Motors
-------- Simulation Options Serial
Advanced

L Files | [Setting: | B Cornpiler

Note that if you have the wrong PICAXE chip selected the available input/output pins displayed in
the block drop-down lists will not be accurate.

NOTE: This section deals only with drawing
the program. Details of how to use the
individual blocks are given later.

Adding a new block

Drag the required block from the toolbox and
place it on the workspace. Most blocks have a
drop down list of options that are used to
alter the way the block operates.

B0 - Woff -
on ‘

v off

Some other blocks have a ‘jigsaw piece’ input
position where another block can be dropped,
for instance you may drop a constant
(number) or a variable into this block.

FPlease add the missing blocks]

If a block is missing the ‘! icon and warning
may be shown, this warning will automatically
disappear when the block is inserted.

Loops and decision blocks also allow other
blocks to be stacked inside them e.g.

do | if input Son -

then | tum output 1) (KD
else | tum output (L) (kD

Start block

A Start block marks the point where the
program starts running.

do [tumn output G5 NI

pause for

| tumn output (5 ik

00 ms

pause for 500 BB
h -

When the PICAXE microcontroller is reset or
powered up, the program starts at the first
Start block. Every program must have at least
one Start block. A program will stop running
whenever a Stop block is reached.

For PICAXE-M2 parts you can have up to 8
Start blocks on each program. New Start
blocks are found in the “Tasks’ toolbox
section.

do | tum output (1D D

' tumn output XD (5

do [ifinput (AU is CIED

Moving blocks

To move a single block or a stack of blocks,
select the top block and drag it to its new
position.

Zooming & Deleting

At the bottom right hand side of
the Blockly screen are 4 icons:

1) Zoom to 100% at centre
2) Zoom In
3) Zoom Out

4) Delete

To delete a block either

1) drag it into the ‘trash can’

2) press the Delete key on the keyboard
3) right click and select ‘Delete Block’

Note that as all programs need a Start block
the first start block cannot be deleted.

Cutting, Copying and Pasting

Use the Cut, Copy and Paste options from the
Edit menu to cut or copy selected blocks or
stack of blocks and paste them either into
another part of the same program or into a
different program.

Alternatively, you can right click and select
‘Duplicate Blocks’

Grid

The grid can be hidden or displayed via the
Blockly Settings. When the grid is displayed
blocks automatically ‘snap’ to the nearest grid
point.

Comment Blocks

It can be useful to drop comments onto your
program to tell other people how it functions.
Comment blocks are found in the ‘Advanced’
section.

This is my program to flash an LED

Labelling a block

It can be useful to give a block an internal
comment which identifies what it is used for,
e.g. “switch LED on”. To add a comment right
click over the block and select ‘Add Comment’

Switch LED on

A new ‘?" icon will then appear, when you
click the icon the comment will be displayed
and can be edited.

The block comment does not affect the
operation of a block; they are only a label for
‘humans’ to read.

How to test run a program

Before you download a program to a PICAXE
microcontroller, it is useful to be able to check
that it works as you intend it to. Simulation
has a number of features that allow you to
test run the program in the software.

1. The Simulation Panel

As a program runs, the Digital Panel shows
the changing state of outputs and inputs as
they would be if the program had been
downloaded to a PICAXE microcontroller.

Simulator

W o

L]

C.5 c.o

C.4

o
g

CA1

08M2[C

u HiN|=

c2

Himinin

2. Simulating digital inputs

To change the state of an input simply click on
the input in the simulation panel. It will turn
from grey (off) to yellow (on).

3. Simulating analogue inputs

To change the value of an analogue input
right click on the input pin to display the
radial slider. Turn the slider as required.

Simulator

W o
5 c.0
cAa

C2

[0
g

08M2
L

n HiN|=

4. Run and Stop
To test run a program click the Run button on
the toolbar or press <Ctrl>+<F5>

To stop a program running click the Stop icon.

As the program runs, the flow of control is
highlighted so that you can follow it. If you
want to slow down the speed at which flow is
highlighted is controlled by the simulation
delay slider.

5. Breakpoints

Right click on a block to add a breakpoint flag
to it. When the simulation reaches this point
the program will then pause.

11 tum output (5 ik

6. Variables display

If your program uses variables, it is useful to
See the changing values of any of the
variables that are used in the program will be
displayed as the program runs.

App — Variables appears under the simulation

Simulator

Ly L o]
[es g co[l]
[cs g ci[]
C Ba
=

C.3
Variable Value

varh, 0

PE6 — Variables are shown in the Code
Explorer

Code Explorer - I
LE-Be 0s
Variable | Symbol | Decimal | Binary | ASCII
2w 214
b0 varh 214 11010110
“bl varB 0 00000000
B wi 0
b2 varC 0 00000000
“ b3 varD 0 00000000
B w2 0
b4 varE 0 00000000
LB varF 0 00000000
B wl 0
b6 varG 0 00000000
“ b7 varH 0 00000000
B wd 0
b8 varl 0 00000000
“ b8 vard 0 00000000
B ws 0
- il
|'a: Variables | |[i= System Constarrts @Lﬂbels

Downloading a program into a
PICAXE chip

PE6 and App (not Cloud)

1. Connect your PICAXE project to the
computer by the AXE0O27 USB download
cable.

2. Connect power to the PICAXE circuit board,
normally 3 x AA batteries (4.5V).

3. Note; your PICAXE chip, if already
programmed, may start running the program
from its memory — this will not affect the
programming process.

4. Click the Program button on the PICAXE
toolbar or press <F5>.

5. The programming progress window will
appear.

6. Programming times vary depending on the
type of chip and amount of program code —
the larger the program, the longer the
programming time.

7. If successful, programming is complete
when the progress bar disappears.

If you are having difficulty programming try
the hard reset procedure as described in part
1 of the PICAXE manual.

Cloud (not PE6 or App)

Web browsers do not allow web sites to
access the USB port of your computer. This is
a very sensible security restriction.

Therefore the online Cloud version of Blockly
cannot program your chip directly (in the
same way the app and PE6 versions can).

Therefore the Cloud version instead saves
onto your computer an ‘“.axe file’ which is a
compiled version of your PICAXE program.

You must then use the Chrome Programmer
App (www.picaxe.,com/progapp) to download
the .axe file onto the PICAXE chip.

10

Using the Cloud Programmer App
— o Z3 .

PICAXE programmer - ?

Select .axe file

P COM5 ~

“"ZQ Program

1. Connect your PICAXE project to the
computer by the AXEO27 USB download
cable.

2. Connect power to the PICAXE circuit board,
normally 3 x AA batteries (4.5V).

3. Note; your PICAXE chip, if already
programmed, may start running the program
from its memory — this will not affect the
programming process.

4. Open the desired .axe file and select the
correct COM port.

5. Click the Program button

6. The programming progress window will
appear.

7. Programming times vary depending on the
type of chip and amount of program code —
the larger the program, the longer the
programming time.

8. If successful, programming is complete
when the progress bar disappears.

If you are having difficulty programming try
the hard reset procedure as described in part
1 of the PICAXE manual.

http://www.picaxe.,com/progapp

Displaying and using BASIC
Blockly is also able to convert any complete
program into BASIC or Javascript.

BASIC is a text based language that is used
throughout the world to program everything
from PICAXE microcontrollers to personal
computers.

Javascript is a very common programming
language used for developing web sites.

Why Convert?

Although Blocks are easy to understand and
quick to build. BASIC programming languages
offer more complexity to advanced level users
and the ability to covert a program into BASIC
offers a way of learning how BASIC programs
are written.

Converting a program into BASIC
1. Design your program as normal and test the
program using the program simulation tools.

2. Convert to PICAXE BASIC

App - Click on the ‘BASIC’ tab
PE6 — Click on the ‘Convert To BASIC’ button

3 The BASIC text window is then displayed
containing the conversion of your program.

Note that it is also possible to display the
BASIC tab in PEB6, to do this use the
File>Options>Diagnostics>Blockly>’Display
BASIC’ setting.

11

PICAXE BASIC

-~
—\|||| FQ
UL R

symbol vard = w@

main:
do
if pinC.2 =
high C.8
else
low C.8
endif
loop

1 then

stop

Notes:
Only blocks that are connected to Start block
in your program are converted.

It is not possible to convert from BASIC
backwards to blocks.

Using the BASIC block you can add sections of
BASIC code into a program.

For full information on the use of BASIC to
program PICAXE chips see the PICAXE website
at www.picaxe.com

Section 2. Outputs

Turn output on/off block

turn output on -

turn output IR for m' ms

The turn output blocks are used to switch a
single output on or off.

do | turn output on -

' tum output Coff

12

Pause block

pause for [lm ms

A pause block makes a running program
pause for the number of milliseconds
specified before the next block is carried out.
You can use it to keep output devices
switched on or off for a set time. Use its input
box to enter a number of milliseconds or a
Variable.

forever

do | tum output (53 CIED

 tum output (off - |

SPE035 MP3 Player Block

SPE035 REVAVICES(6

The SPE035 MP3 Player is a low cost device
that can be used to add music and speech into
your PICAXE project.

www.picaxe.com/products/spe035

This block allows simple control of the SPE035
module to easily play back MP3 tunes.

S5 =< initialise - |
il B.4 -

pause for m' ms
SR play tune - I 1)
Y B.4 -

13

Play Note Block

Use a play note block to send a pulsed signal
to a piezo sounder connected to an output of
a PICAXE microcontroller. You can use a
sequence of sound blocks to play a simple
tune.

do | play note ﬁﬂ- for "'l'l. L C O~

pause for Jill) | ms

Play block

pla'y' Happy Birthday - on CO-

Most PICAXE chips have 4 pre-programmed
internal tunes, which can be output via the
Play block.

As these tunes are often included within the
PICAXE bootstrap code, they use very little
program memory.

The Tunes are:

0 - Happy Birthday

1 - Jingle Bells

2 - Silent Night

3 - Rudolf the Red Nosed Reindeer

VST Happy Birthday - Lyl C.0 -

pause for Jit) [ms

http://www.picaxe.com/products/spe035

Tune block

mtune 2.0, 15, (543,543,543,

Working in a similar way to the Play block, the
Tune block allows special musical tunes to be
played.

The difference with Tune block is that it
converts RTTTL mobile phone ringtone files to
PICAXE tunes and plays them with or without
flashing outputs.

RTTTL ringtone files are freely available on the
internet (there is a very wide range of tunes
available) and these can be downloaded as
small text files. The files contain the notes and
timings that make up the tune. The Tune
Wizard converts these ringtones to a PICAXE
tune block upon download.

Once you have downloaded your ringtone file
(ensure it is an RTTTL format), save it to disk.

In PE6 you can right click the Tune command
to start the Wizard. For the App you will need
to run the Wizard separately.

jRight click to Run Wizardl

s

“dy Ring Tone Tune Wizard (PICAXE-28X2)
Duplicate

Tune Command | Tune Editor

Select Piezo Pin.
AD -

et |

Add Comment
Collapse Block
Disable Block
Delete Block

Ji+Find atune

Open RTTTL ¢ File
Paste RTTTL Text

Generate BASIC

Result

tune A0, 15, (343,543,543 545,547,848, B
$48,547.545,545 542 542 542 542 543,545,
$47.647.$45.843.543.543.843.943 543,545,
$47.548.548.947.545.845)

Help
Add breakpoint

Run wizard

14

Click the ‘Open RTTTL txt file’ button to
browse the computer to find the file.

Select the output to flash using the drop
down box. The chosen outputs switch on/off
in time to the tune. The Flash Mode can
switch outputs 0 and 4. Ensure that you have
configured the I/0 pin 4 as an output using
the Select PICAXE dialog in order to see all of
the available options.

Once you have generated the Tune BASIC click
‘Copy’ in the Wizard so that you can the paste
to code back into the Tune block.

Note that, unlike the Play Block, the

Tune block requires much more memory in
the chip as all of the notes have to be
specially programmed into the chip. If you
wish to play your tune a number of times, use
the Tune block in a Procedure to save
memory.

Servo Block

setservo (IR fo L) |

Servos, as commonly found in radio control
toys, are a very accurate motor/gearbox
assembly that can be repeatedly moved to
the same position due to their internal
position sensor. Generally servos require a
pulse of 0.75 to 2.25ms every 20ms, and this
pulse must be constantly repeated every
20ms. Once the pulse is lost the servo will lose
its position.

The Servo block starts a pin pulsing high for
length of time pulse (x0.01 ms) every 20m:s.
This block is different to all other blocks in
that the pulsing mode continues until another
servo block or outputs block. Outputs blocks
stop the pulsing immediately. Servo blocks
adjust the pulse length to the new pulse
value, hence moving the servo.

The block details for the servo block have two
settings; the output pin that the servo motor
is connected to and the pulse time.

The pulse time can be a value held in a
Variable. Note that the value for the pulse
time MUST be in the range 75 to 225. The
servo motor may malfunction if the pulse is
outside of this range.

15

Example

The program below will move a servo motor
attached to output B.2 from one extent of its
travel to the other, repeating continually.

do | setservo (HPto)|

pause for 'I'I'I. ms
set servo o ez
pause for 'I'I'I. ms

Using the Servo block

Note that the servo block is required to
‘activate’ the servo pulsing. Once pulsing is
started smoother operation (less jitter) can be
achieved by using the ‘servopos’ command
for subsequent movements.

do .setsewupusmtu .

pause for | [EI)) | ms
set servopos [EE) to

pause for m. ms

|

Send Infrared block
send infrared to

This block is used to transmit the infrared
data to a Sony™ protocol device. It can also be
used to transmit data to another PICAXE
circuit that is using the ‘read infrared’ block.
Data is transmitted via an infrared LED
(connected on output 0) using the SIRC (Sony
Infrared Control) protocol.

The send infrared block can be used to
transmit any of the valid TV data codes (0-
127). Note that the Sony protocol only uses 7
bits for data, so data codes of value 128 to
255 are not valid.

See also the ‘read infrared’ block.

Pwmout block

The pwmout block is used to provide a varying
ratio pulsed output. This is often used for
speed control of motors. See the main PICAXE
manual for more details.

16

Set Pins block

setpins (G to @)

When program flow passes through a ‘set
pins’ block, the output port is set to the binary
value of the number entered in the block.

If you are familiar with the binary system then
the set pins block is a convenient way of
switching combinations of outputs on or off.

bit | 7 |6 (5|4(3|2]|1]10
valug|128/64 |32 (16| 8 | 4 | 2 | 1

In the table above the ‘bits’ can be switched
on by sending the selection value of the bit.,
e.g. ‘set pinsB to 4, which will turn on an LED
at B.2 (and switch off all the other ouputs.

Set Dirs block
set dirs to

The set dirs. Block converts pins to either
input or outputs. A binary bit value of 1
means output, a value of 0 means input.

Commands such as ‘turn output on” will also
automatically set the dirs bit to an output.

Motor blocks

set motor [to
set motor (X to (EEICTERS for 1) | ms

The Motor block allows you to use pairs of
outputs on a PICAXE microcontroller to switch
a motor forward, reverse or off.

The motors are given a letter A to D that
controls outputs as follows:

Non-8 pin 08M2
A (B.0, B.1) (c.0,C1)
B (B.2, B.3) (C.2,C4)
C (B.4, B.5)
D (B.6, B.7)

Remember that the direction in which a
motor turns depends on which way current
flows through it, and therefore on the way it
is connected to power. Therefore if your
motor moves in the wrong direction it may be
necessary to reverse the two wires.

NOTE: Output and Motor blocks both use the
same output pins to switch the outputs of a
PICAXE microcontroller.

17

Example

A steerable buggy is usually driven by two
motors, one powering each driving wheel
with a free-running jockey wheel to keep it
stable. The program below shows how a
sequence of Motor blocks can be used to
drive a buggy which has one motor connected
to outputs 0 and 1 (motor A) and the other
motor connected to outputs 2 and 3 (motor
B).

set motor (%3 to
set motor () to

pause for

set motor (3 to

pause for

set motor (%3 to

pause for

set motor (L to

set motor [ZJE) to
stop this task

H000 W=

S000 RN

H000 Wi

Robot Motor blocks (various)

@ - BOT120

D E = no change - |

.

Some robots such as the BOT120 Microbot
use ‘pairs’ of motors (Motors C and D) to
control their movement.

For these robots it is easier to use the
dedicated robot motor blocks, as these blocks
will automatically control both of the robot’s
motors.

For instance to make the robot go forwards
select the centre checkbox in the top row.
This will switch on both motors C and D in the
forward direction

~9 & 8§ ~ BOT120

O N N JOREE 5T o change -
888

pause for) | ms

~B 8 8§ ~ BOT12

U@ @) setspeed CEEIE
888-

pause for) | ms

~B 8 8§ ~ BOTI12

<@ 8 8> setspeed (CEETN
8U8-

pause for) | ms
~83 8 8§ - BOTI20

Ol BV8 JOR L] nochange =
888 -

18

LCD blocks

LCD send to
LCD print on X Variable A = &

LCD print on

These block can be used to display a message
on an LCD screen attached to a PICAXE-driven
circuit board.

www.picaxe.com/products/axe133y

This block will be simulated if the program is
simulated within PE6 (not within app).

Within PE6 a small LCD screen window will
pop up during the run to display the LCD
message (make sure the simulation pin for the
LCD is correctly set under
File>Options>Simulation)

LCD send to
LCD print on : “

Lol move to line2 - 181 C.0 - |

LCD print on

J tekkekbeteEbER

Simulated LCD screen

19

Serout Block

serial output at on
¥ send as ASCII

This block allows output information to be
sent from the PICAXE microcontroller to a
device such as a serial printer, a serial LCD
screen or another PICAXE which is connected
to an output of a PICAXE microcontroller.

The first list to set is the serial mode. Set the
mode to that specified by the device you are
sending data to.

The second list is used to select the output pin
on the PICAXE microcontroller to send the
data through.

serial output at on
¥ send as ASCII

serial output at (FZUED on (K3 | (CL%D

@ send as ASCII

serial output at ((ZZI0 on (KD €2
@ send as ASCII

The data to be sent is attached to the input on
the right. This can be a text string, a variable,
or a constant.

If using a string make sure you also check
‘send as ASCII".

If using a variable or constant you can either
send the raw binary value e.g 32 (no ASCII
check) or the ASCII character equivalents e.g.
“3” then ”2”(check ASCII box)

Sertxd Block

serixd

%) send as ASCII

The sertxd block is similar to the serout block,
but acts via the serial output pin rather than a
general output pin. This allows data to be sent
back to the computer via the programming
cable. This can be useful whilst debugging.

See the PICAXE Manual 2 for more
information

http://www.picaxe.com/products/axe133y

Section 3. Delays

Pause block

pause for

) | ms

A pause block makes a running program
pause for the number of milliseconds
specified before the next block is carried out.
You can use it to keep output devices
switched on or off for a set time. Use its input
box to enter a number of milliseconds or a
variable.

forever

do | tumn output on - |
pause for) | ms

turn output | off - |

pause for

500 ms

Wait until Input block

This block waits until an input pin changes
state — until the input goes on (high) or off
(low).

20

Sleep block

sleepfor [§[9) |'s

This block puts the PICAXE microcontroller
into low power mode for a specified number
of seconds.

This block can be used to save battery power
in your project. All output devices will be left
in their current condition, but signals from
input devices will not be responded to while
the chip is in sleep mode.

The time input box is used to set the number
of seconds of sleep mode required.

Note that Sleep times are not as accurate as
Pause times.

Section 4. Inputs

Input devices such as switches and sensors
send information from the outside world into
the control system. Output devices are
switched on or off in response to the
information provided by input devices.

Example

A buggy is often fitted with micro-switches so
that if it approaches an obstacle, a
microswitch will be pressed.

/

Sensors

No obstacles - sensor off

Obstacle - sensor on

The information that the switch has been
pressed can be used in the system to switch
off the motors driving the buggy, and start a
sequence of movements to move around the
obstacle.

A microswitch is a digital sensor. It has only
two states - “on” (or “closed”) and “off” (or
“open”).

These states are often labelled by the digits 1
and 0, which is why the sensors are called
digital sensors.

21

Example

A controlled hot water system includes a
temperature sensor which constantly
monitors the water temperature.

The water heater is switched on and off in
response to the information provided by the
sensor. If the water temperature falls below a
set level, the heater is switched on until it
reaches that level again. Then the heater is
switched off.

___4_/

Control
Systemn

Heater In

Water Tank Temperature

Sensor

A temperature sensor is an analogue sensor.
It provides a reading which changes in line
with the changing level of whatever it is
sensing.

Temperature

Sensor Reading

Input block

if input 3 on - |
then | tumn output (15D CLED

else &lm output off -

Use this block to test the state of a digital
sensor connected to a digital input of a
PICAXE microcontroller.

When program flow reaches the input block it
will only process one of the two sections,
dependant on whether the input pin is on
(high) or off (low).

Multiple input blocks can also be nested to
test, for instance, if two pins are both on.

if input S on -
then | if input i on -
then | tumn output (KD (CIED

else ~ilrn output off -

22

Analogue Block
Temperature Block
Ultrasonic Block

read analogue | varA - |
read temperature 08 varA, - |

read ultrasonic fE B3 to

These three blocks all operate in the same
way, loading an analogue value into the select
variable. To then test whether the desired
threshold point has been reached a variable
decision block is then used.

Analogue — any generic sensor like an LDR
Temperature — DS18B20 temperature sensor
Ultrasonic — SRFO05 distance sensor

do | read analogue (53 to £E7:- %3
SR N[> Jif00)

then (‘tumn output (UKD G
eise. | tum output (KD Gk

Simulating a Digital Input
To change the state of an input simply click on

the input pin within the simulation. It will turn
from grey (off) to yellow (on).

Simulator

Llv LI o]
[es g co[]
[c« g c1[]
[c2[]
=

Simulating an Analogue Value

To simulate a changing value for analogue
blocks right click over the corresponding pin
in the simulation panel and use the radial
slider.

Simulator

o

08M2[C
L

23

Calibrating a Sensor using Debug

Often when using analogue sensors it is
necessary to experiment to find the correct
threshold point (e.g. the correct light value to
switch a device on or off).

To read analogue values ‘live’ from a PICAXE
chip we can also use the Debug block in a loop
like in the program below.

do | read analogue [$583 to FES%

pause for ml ms

Click on ‘Debug’ (in PICAXE menu in app or on
the Code Explorer panel in PE6).

The value of varA then be displayed on the
computer screen and will update every 500
millsseconds.

Code Explorer -«
S Bme (1 I
Variable | Symbol | Decimal | Binary | ASCII
& wh 214
-~ b0 varh 214 11010110
=~ bl wvarB 0 00000000
B wi 0
b2 varC 0 00000000
-~ b3 wvarD 0 0Doo0ooD
B w2 0
- bd varkE 0 00000000
-~ bB wvarF 0 0Doo0o0D
B w3 0
- b6 varG 0 0000000
‘b7 varH 0 00000000
B wid 0
b2 varl 0 00000DOD
“b8 var) 0 00000000
Eh wh 0
- I
]'2: Variables | [i=| System Constarrts @Labtﬂs

Read Infrared Block

read infrared o] varA, - |

% TV remote (+1)

To receive information from an Infrared
source, the Read Infrared block is used. The
block will wait for a new infrared signal from
an infrared TV style transmitter. It can also be
used to receive a ‘send infrared’ block sent
out from a separate PICAXE chip.

All processing stops until the new block is
received. The value of the code received is
placed in the chosen variable.

As TV style remotes (e.g. part TVR010) send
out an offset value (e.g. value 0 for channel 1,
value 1 for channel 2) the checkbox allows
you to automatically add 1 to the value
received, so the variable value then matches
the button pressed.

The basic circuit required for this block is as
follows. The device on the left side of the

circuit is an IR receiver LED, part code LED020.

(1 1]

PICAXE

+
Tﬂ.?uF

24

Example

In the following program a signal is received
from a TV Infrared remote control. Lights are
switched on if key 1 or key 2 is pressed.

' read infrared) varA - |
¥ TV remote (+1)

SR =~] 1]
then tum output (1) (1D

then | tum output (XD (CIED

else [tum output (D ik
_um output (XKD D

The read infrared block waits until a signal is
received, and saves this as a number in
Variable A.

If the value is 1 or 2 the outputs are switched
on. Otherwise the lights are switched off.

Interrupt Block

enable interrupt when = on |

An Interrupt instantly captures the flow of
control whenever a preset digital input
condition occurs to trigger it e.g. when a
switch is pressed.

When the interrupt is triggered flow jumps
immediately to a sub-procedure block (which
must be called ‘interrupt’) and then carries
out any blocks which follow until it reaches
the end of that block. It then returns to the
point in the main program which it was at
when the Interrupt occurred.

In order to use an Interrupt, the PICAXE must
be told to look for the input condition. This is
done through the enable interrupt block.

enable interrupt when [SEE8 1s L5

To prevent the Interrupt retriggering itself,
the Interrupt is automatically disabled once it
is triggered. To re-enable it another enable
interrupt block is required.

25

Example

A PICAXE microcontroller running a
continuous loop flashing lights needs to be
able to react to a button press and play a
warning sound.

enable interrupt when - on - |

[tum output on -

pause for 500 JRLLS
tum output (5D XKD

pause for Zi0) | ms

Y interrupt)
- play note ﬁﬂ' for "l'l. on [$F

Embb interrupt when ¥ on ~ |

The Interrupt is used to capture the flow and
play a sound. The interrupt is then enabled
once again before returning to the point at
which it left the main flow.

There is no limit to the number of blocks
inside the Interrupt. It is a common technique
to add an ‘Enable Interrupt’ block just before
the end of the procedure, so that when the
Interrupt sub procedure returns the interrupt
is re-enabled.

Only one Interrupt sub-procedure can be used
per program.

Serial In Block

serial in at ({PZIUEY on (o1 to (TN
@ receive as ASCII

serrxd to
@ receive as ASCII

The Serial In block is used to receive serial
data into an input pin of the microcontroller.
It cannot be used with the serial download
input pin, for this pin use the serrxd command
instead.

The input pin is the input on the PICAXE that
the data is to be received through. The
Variable option is a variable location that the
data is stored into once it is received.

The first option specifies the baud rate and
polarity of the signal. When using simple
resistor interface, use N (inverted) signals.
When using a MAX232 type interface use T
(true) signals. The protocol is fixed at N,8,1
(no parity, 8 data bits, 1 stop bit).

The Serial In block forces the PICAXE chip to
wait until serial data is received through the
chosen input. This data is stored in the chosen
variable.

To store raw binary data (as opposed to ASCII
strings) make sure the ASCII checkbox is not
checked.

26

Example

Serial data is being received from another
PICAXE chip and needs to be stored in the
EEPROM.

In the program shown below, the serial data is
read into Variable B through input pin C.2.
The Write block is used to store the value in
Variable B in the EEPROM. This process is
repeated 16 times to fill the EEPROM memory
locations

count with (ZZ¥@ fom () |to €3 by @]
do | serialinat on " varB -

B receive as ASCII
write (Zi:ED | o EEPROM | (XD |

Using the Serlal In block to receive serial data

Section 5. Procedures

Blockly provides a clear, step-by- step method
of building a complex control system, by
creating a number of linked subsystems called
“sub procedures”.

How to build a sub procedure

Drag out a ‘to do Procedure’ block to begin
the procedure. Drag the block onto the
program and place it separately from the
start block as shown below.

Change the name to something related to the
task it does.

Use other blocks as normal to create the
procedure.

m %Y fiash lights
| turn output VKD KD

| tum output CEID €83

‘ p:au_se for ﬂ&” ms
| tumn output LK EikD
tum output KD (EED

27

How to use a procedure

Once you have built a procedure, you can call
it into use whenever you like in the program
by using the call block, as shown below.

start
call fiash lights

] flash lights
[tum output (15D D
' tum output (XD D

‘ p:ause for m] ms
| tum output XKD G
tum output XD G2

The call block calls the procedure into use.

call flash lights

Drag the call block onto the program. Place it
at the point where you want the procedure to
be called into use.

Note that all the procedures that have been
built in a program are automatically listed in
the toolbox. When flow reaches a call block, it
jumps to the Procedure block with the same
name. When the program flow reaches the
end of the procedure, the flow jumps back to
the call block that called the procedure. To
test run the whole program click on the
simulation Run button.

Example

A PICAXE microcontroller is used to control a
system in a child’s toy which plays a tune
when it is hugged. A piezo transducer is
connected to an output pin, and a push switch
is used to sense when the toy is hugged. The
program for the system is shown below. The
tune is created as a procedure which can be
tested and edited separately from the main
routine.

do | ifinput on -
then | call play tune

™Y piay_tune |

{21 Happy Birthday - [l B.0 -

—

Using a Procedure to play a tune after an input condition
is met

28

Example

| ENTRANCE W'W

\ M
The program shown below is a control system
for a sliding door. When a switch is pressed,

the door opens. It stays open for ten seconds
and then closes again.

™Y open door)

((Ssfmolor £33 to (TS
| pau:ie for E‘jﬁ” ms
Eé’t}morm

do [ifinput (S s EED

then | call open door
péuse for } ms

call close door

to
(‘s mator £33 to

bet motor (35 to

Sliding door control system using procedures

Section 6. Maths & Variables

In Blockly a variable is a ‘number container’
that can hold a given value between 0-65535.

The variables are called varA to varZ by
default, but can be renamed to any name you
choose. To rename a variable simply click on
the drop down arrow to the right of the name
and select ‘Rename Variable...’

I{ varh - I

v ovarh
Rename variable. .

Mew vanable. .

This section explains how they can be used for
a variety of mainly counting and timing
purposes.

The current value of a variable can be seen

during a simulation in the Code Explorer panel
(PE6) or under the simulation panel (app).

Simulator

A o

L]

C5 CoD

C.4

[
:

cAa

08M2[C

n LT

c2

Himimin

Variable Value

vard, 0

29

Increase Variable block

increase (XA by | @ |

HE——

Each time flow passes through an Increase
block, the desired value is added to the value
of the selected variable.

Decrease Variable block

decrease (EZXD by @)

The decrease block works in a very similar
way to the increase block.

The difference is that when program flow
passes through a decrease block, the value is
subtracted from the selected variable.

Note that PICAXE chips do not support
negative numbers, so any number below 0
will underflow e.g. -1 actually becomes 65535.

Variable If block

To test the variable the ‘variable if’ block is
used. The value can be tested to see if it is
greater, less than or equal to another variable
or a set value.

This block is unique in that its shape can be
modified to add more tests. To do this click
the blue ‘settings’ icon top left and then,
working completely within the small pop-up
window, configure the block by dragging out
the number of else if commands required.

30

Example one

Using this system you can configure the
blocks for a number of consecutive tests, as
shown in this infrared example.

do | read infrared 6] varA ~ |
% TV remote (+1)

OF -)= W)
then (tum output (¥ (I

then (tum output (ZE EED

else | tum output (33 (CiED
_tum output (X353 Gl

Example two

A PICAXE microcontroller is being used to
control a lamp. A light sensor is connected to
analogue input 0. The system will switch on
the lamp automatically in dark conditions.
Below is a program for the system.

do | read analogue] varA -

BRI =rA)~ - [i{700]
then ((tum output (S CIED

eise | tum output (5D Gk

Example three

A PICAXE microcontroller is used to control a
system for counting cars entering and leaving
a car park using two digital sensors. When 10
cars are in the car park the ‘FULL’ light is lit.

SR (> Ti0]
then tum output CE) (I

eise (tum output (KD (Cikd

Program for making and displaying a count.

31

Set Variable block

A value can also be given to a variable in the
form of a mathematical expression as shown
in the example above (varA = varC + varB).

Note how multiple expressions can also be
nested inside each other to make the
equation longer (varA = varC + varB + 10).

el i 0]

Random block

set fE) to random

Using the random block a variable can be
given a random value between 0 and 65535.
In the example shown below, a set of display
lights for a small Christmas tree are connected
to 8 outputs of a PICAXE microcontroller.
Every second the display will change at
random.

setdirs CRJto @3

do | set QE2%d to random
set pins CEA to | (273 |
pause for im. ms

Note that as with all microcontrollers and
computers, the generation of random
numbers is based on a sequence.

32

Section 7. Advanced Blocks

Read and Write Blocks

read (ZZ¥D | fomEEPROM (@

wite | (CZZ¥D | LEEPROM (0 |

When a program run is started, all variable
values automatically reset to zero. So, when
the PICAXE microcontroller is reset or
powered up, all variable values are reset to
zero.

If you want to retain variable values when the
PICAXE microcontroller is powered up or
reset, you can use the write block to store
values in the chip’s data EEPROM memory.
The read block is used to retrieve the values
from the chip’s memory.

The read block takes the value which is
currently stored in a selected address (in this
case address 0), and puts it into the selected
variable (in this case variable A).

The PICAXE microcontroller’s data EEPROM
memory has 255 separate addresses. Each
address can store a number between 0 and
255. The EEPROM window (PE6 only) displays
the contents of the memory when you test
run a program.

{0000 ¢ 000 000 000 000 000 000 000 000
0003 | 000 000 000 000 : 000 000 000 0oo
0016 | 000 000 000 000 000 000 000 : 0oo
0024 | 000 000 000 000 : 000 000 000 @ 0oo
0032 | 000 000 000 000 000 000 000 @ 0oo
0040 | 000 000 000 000 000 000 000 000

| Data | [] Scratchpad T able

Data EEPROM window

33

Read 12C and Write 12C Blocks

set i2c slave address to
) i2cfast | i2cword

_set Dl = e W =R Ol Lego NXT Temp -

% 10100000

read S | fromie @ |

The I12C commands allow communication with
third party devices such as memory EEPROMSs
and sensors. For further details see the main
PICAXE manuals.

BASIC

;Use Ctrl+ V to paste BASIC code

This block is used as an extension to a
program. Any valid PICAXE BASIC code can be
typed into the block cell window. When
program flow arrives at this block the BASIC
code within the block will be processed as if it
were a procedure.

Note that only PE6 can simulate the BASIC
code, the app/cloud versions of Blockly will
skip over this block. This is because PE6
contains a much more powerful simulator
engine than the web versions.

For information on the other advanced
commands (e.g. suspend, reconnect etc.)
please see the corresponding description in
PICAXE manual 2 (BASIC commands).

Section 8. Licenses

‘Blockly for PICAXE’ makes use of the following open source projects and acknowledges the
developers of these projects.

Blockly

Bootstrap
FileSaver

Blob
CodeMirror
JS-Interpreter
Acorn

iQuery
Mustache.js
RequireJS
Signals

https://github.com/google/blockly/blob/master/COPYING
https://github.com/twbs/bootstrap/blob/master/LICENSE
https://github.com/eligrey/FileSaver.js/blob/master/LICENSE.md
https://github.com/eligrey/Blob.js/blob/master/LICENSE.md
https://github.com/codemirror/CodeMirror/blob/master/LICENSE
https://github.com/NeilFraser/JS-Interpreter/blob/master/LICENSE
https://github.com/ternjs/acorn/blob/master/LICENSE
https://github.com/jquery/jquery/blob/master/LICENSE.txt
https://github.com/janl/mustache.js/blob/master/LICENSE
https://github.com/jrburke/requirejs/blob/master/LICENSE
https://github.com/millermedeiros/js-signals

34

https://developers.google.com/blockly/
http://getbootstrap.com/
https://github.com/eligrey/FileSaver.js
https://github.com/eligrey/Blob.js/
https://github.com/codemirror/codemirror
https://github.com/NeilFraser/JS-Interpreter
https://github.com/marijnh/acorn
https://github.com/jquery/jquery
https://github.com/janl/mustache.js
https://github.com/jrburke/requirejs
https://github.com/millermedeiros/js-signals

