

Programmers manual for our
2.1” color TFT with 65.536 colors

from
www.display3000.com

V 1.50

23. January 2009

© 2008 by Peter Küsters

bits per pixel).............................36256-color-mode (8 Needed software adaptation for the native

microcontroller..5

page 2 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Table of contents:

Table of contents: ...2

Overview...4

Schematics of the connection of the display to the

Note to our delivered software library / utilities / other files..7

The code (Bascom Basic):...8

The code (WinAVR C): ... 11

Driving the display – general comment (C and Basic): ... 12

Your new commands for the display (Bascom Basic) ... 13

Your new commands for the display (WinAVR C) ... 15

The data output to the display.. 18

The output window .. 19

The outut of characters ... 21

Characters and numbers with fixed width... 21

Font 1 (5x8) ...21

Font 2 (8x14)...22

Characters and numbers with variable width (proportional font) ... 23

Special case: extended characters (like umlauts and other foreign characters).................... 24

The output of colored graphics.. 26

Minimal goal: setting one single pixel: ... 27

Introduction to the color system of the display... 28

65,536 (65K) colors ..30

Alternative 1: 256 color mode (RGB format 3-3-2) ..31

Alternative II : xxx out of 65,536 colours (colour table)...34

Bitmap graphics ...37

Compression / decompression of graphics files...38

Creation and output of graphical elements / photos... 42

The GLCD_Convert program.. 43

Overview – how to get bitmaps into the microcontroller? ..48

Some hints from personal experience ...49

Changing the output direction (rotating the display) .. 50

Conversion of the software to other systems or other programming languages..................... 52

Reference of driving the 2.1“ Display.. 53

Alternate initializing (256-color-mode -- 8 bits per pixel ...

58

............ 58

Initializing (65.536-color-mode -- 16 bits per pixel ...

...16 Bits-Interface

8 Bits-Interface ..

page 3 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

The serial interface of the graphics controller.. 53

..................................53

.................................53

Command / Parameter..53

Logic analyzer screens ...54

(Zoom):..55

Timing of the signals / clock line vs. data line ...57

The display commands: ..

.59

Switch off sequence..60

Define output window (where to write pixels)...61

Switch the display to white or black screen (without loosing the screen content)61

Set vertical offset / scrolling..62

Coordinates and output direction ...63

Possible problems and their solutions:.. 65

Contact:.. 70

microcontroller - im-ATMega. For this, we connected the display with

w the microcontroller microcontroller would definitely not be able

mory, we do not have to take

needs. For this reason, we need to do most

The connection between the microcontroller and

page 4 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Congratulations on the acquisition of our 2.1” display module kits.

You will recognize, that you will shortly never think of the idea working without a color dis-
play. The projects realized by you will get automatically a professional touch now.

Overview

the graphics TFT is done serial – this
means the needed data is moved to the TFT bit by bit.

Unfortunately this display is pretty „dumb“ and does not offer too much support for our

activities by our software. The complete pixel
data of the display content needs to be sent by our software. No matter if a string is been
written, an icon needs to be displayed or a line needs to be drawed: Every pixel needs to be
calculated by the software and needs to be sent to the display.

Luckily the display knows a command to reduce the pixel output to a specified area (think of
opening a window) and it allows selecting an output direction. This is very helpful as it re-
duces the number of pixels we need to transfer to change a character with a size of 5x8 to
40. We just open a virtual window of a size of 5x8 and then we send 40 x pixeldata (which is
basically the individual pixel color). Due to the extra display me
care of refreshing the whole display 60 times a second. If we would have to do this – the

 to do anything else. No
only needs to do anything if we change something on the screen.

As mentioned above, the data is been sent serial to the display. To save our resources and
to speed up this serial transmission we are using the hardware SPI module, buildt into the

 the SPI port of the
portant is only Data and Clock, however the display needs some more lines which our soft-
ware needs to toggle manually if needed. These other lines are Select (CS), Reset,
Data/Command (DC)

en, you will get any detail

using a buffer chip between dis- the microcontroller – we are
wed. Please note: on our module, we do not

e display to the microcontroller

page 5 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Schematics of the connection of th

The connection of the display happens through 5 wires:

a) CS (Select)
b) Clock (Clock signal)
c) Data (the data bits)
d) DC (Data / Command identification)
e) Reset (Full Reset)

At the following picture this connection is sho
connect the display directly to
play and controller.

A data sheet of the unkown display controller is not available. Why not? This display is bee-
ing used only in OEM consumer electronics devices. You only are able to buy this display if
you order at least 500,000 of these. Only th ed information – and

– you will see a display output right

microcontroller, you may just add volt-

analyzer. Then, we were able to develop our

u buy this display instead of the expensive official display.
with this display as everybody is losing money ler). Therefore nobody is interested in helping

e manual to your board). Each mod-

page 6 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

only on a 1:1 basis. The manufacturer of this display has no interest in selling this display in
smaller numbers to anybody. If you need only ten or ten thousand of these displays, they
want you to buy their “regular” display which they sell through the distribution / reseller for
a higher price (the distribution display is of course using a totally different graphics control-

(beside you of course) if yo

How comes Display3000 know how to drive the display?
We did reverse engineering and we peeked out the data communication between the origi-
nal hardware and the display with our logic
software. More on the logic analyzer signals at the end of this manual starting from page 54.

If you ordered a module with integrated
age to the module (see separately hardwar
ule has been pre-programmed for testing
away.

 it will be easy to understand (hopefully). our code – if you then look at the code,
nual, we explain the general idea behind

: quick learning curve, quick development,

ested in Bascom: this deal saves No shipping costs then. If you are inter
real money!

s of the Atmel microcontroller, sample soft-On your CD, you will find several data sheet

page 7 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Note to our delivered software library / utilities / other files

ware for driving the display (in C and Basic) and several manuals for our hard- and software.

There are also two compiler placed on our CD:

• WinAVR: a pretty good Open Source-C-Compiler
• A limited version of Bascom, a commercial Basic-Compiler

Regarding Bascom: The delivered Basic-Software has been created for the Atmega in
Bascom. Bascom is a very good Basic compiler which is available usually for around
83 Euro (approx. 108 US$). On our CD you will find the latest demo version. Actu-
ally it is a full version including all sample files, help files, IDE, simulator etc. but it is
limited to 4 Kbyte compiled code. This is fine for a first test, but of course is not
enough for most “real” projects. We are offering a special hardware bundle deal
which only is valid up to 1 week after you got your display module: full licensed ver-
sion Bascom (includes all future updates for free) for only 65 Euro (approx. 84 US$)
you may order our hardware bundle version – this gives you 25 US$ discount.
This is only valid up to 2 week after receiving your goods and only if you originally
purchased a display module costing 63 Euro (or 82 US$) or more.

Both the Basic and C-files can be opened with any usual program editor (Bascom and Win-
AVR are also bringing their own editor).

Basic or C?
Both does have the right to live. Even professionals are using Basic if they need a running
solution quickly. Basically the following applies:
Basic quick success – but usually limited to the
available libraries (which are in case of Bascom really a lot!)
C: more difficult to learn, much closer to the hardware and much more flexible than Basic,
usually needed to development for a customer. Generally approx. 30% faster then Basic.

Note: As we heavily commented the software code, we will not go into many
code-details in this manual. In this ma

sts in the past, we

lot of explaining comments, we will not go into detail

ne once – usually at the beginning of the code

needs to be configured at the beginning 8) Hardware-SPI of the microcontroller

you like and add here. Just define any colorall the needed data for the colors.
t have to remember

your project. Check the ATMega datasheet for this.
adapted to the needs of This need to beInput - port with switched on Pull-Up-Resistor.

In our example, we define most ports as an

you need to add the used characters. If you want to add more fonts,

valuable memory with each Call-Statement (che
val - option. This would save you a lot of

the need of the content/parameter software later has
text and position it directly). Without this option

open this file, you will recognize the structure of the code:

font is saved.

page 8 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

The code (Bascom Basic):
Note: If you want to program in C, just move forward 2 pages.
The file GLCD21_Display3000.bas does contain all needed code for driving the display. If you

1) Definition of the variables

2) Definition of the used subroutines which then may be called through your program by
Call Routine (parameter). FYI: The usuage of the option byval is important to al-
low you entering direct parameters like LCD_Print(„Hello“,10,10…) (you enter

byval you would need to fill variables first
with the needed content. If your
available in variables, you might get rid of the by

ck Bascom help on further details).

3) Definition of the font-arrays; Here, all details about the used Our subroutine
LCD_Print uses these parameters to learn about the size and needed space between the

data about the fonts.

4) Definition of the used ports of the ATMega. Here you define which port is needed as an
output port and which port as an input port.

5) Definition of the display connection. We did place all display ports here in constants. If
you later want to change the used ports for the display connection, you just need to change
these entries. Advantage: instead of already remembering that Port B.4. is beeing used as
Reset, you just use LCD_Port.LCD_Reset.

6) Predefined colors as constants are making your life easier. You do no

7) Predefined constants for color mode and orientation

9) Initializing of the display needs to be do

As the code comes with a
with this manual. If there are questions: just mail us.

Our code is well documented and self-explaining. Play around to learn all functions. You will
recognize: running this display is easy.

If you ordered a module including a Atmel microcontroller from us, the controller has been
programmed from us for testing and demonstration. Due to lot of reque
added this default program to our CD. It is called portcheck.bas and is located in the direc-
tory of the Bascom Basic program files.

any misinterpretation, we say it again: You are

needed by our subroutines, defines colors, etc.

directory with your main program file,

are only allowed at the end of the program), you some specialities of Basic (e.g. Data lines

 avoid this, we recommend the usage of the
Your main program will quickly become crow

in your Bascom Basic programs.

page 9 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Integrating the new display commands
ded if all the needed subroutines would be

embedded in your program file all the time. To
command $Include which will include the needed subroutines only during the compilation
process. Instead hundreds of program lines you only see those $Include-Commands. As of

need to embed 3 different files by using $Include. If these files are not located in the same
you need to add the path to them.

At the beginning of the program, behind the definition of the variables but before the first
call of a dispaly routine:
$include Init21_display3000.bas
This initializes the display, defines all variables

At the end of the program, but before any DATA-lines and also before any graphic files
which will be embedded using the $Include command:
$include Glcd21_display3000.bas
This file contains all routines for driving the display. If you do not need specific commands
you may delete them to save memory.

At the very end of the program (e.g. last line):
$include Glcd21_fonts.bas
Here all the font data and the display initialisation codes are embedded.

Check the sample program Portcheck.Bas. This uses some commands and shows how
to include the display files.

Using these $Include technique offers you another advantage. You will now be able to pre-
sent your main code on the internet or to send it to somebody else. You will not violate our
copyright if you skip the include files. Anybody who purchased a display from us, owns his
own version of our files
Init21_display3000.bas
Glcd21_display3000.bas
Glcd21_fonts.bas
on his/her CD and will be able to compile your code and run it on their display. To avoid

not allowed to send our display library code
to anybody or to upload it to the internet etc. These are your personal licensed files and
these are not freeware.

or just specific chapters as you need.
full manual in detailread again either the to get a brief overview. Then you might

colors with color table, and the later

code grows, you need to raise these
 you need to do this manualy, if yourdoes not know about the needed stack size etc. so

SWSTACK and FRAMESIZE. See comment at the beginning of the source code. Bascom

 works, but other programs don’t, you probably encountered an

page 10 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Your first programming in Bascom Basic
If you want to be sure that you can do the programming of the module correctly, just start
with the program blueline.bas on our CD. This Code contains only a few possible
problems and runs even in the demo version of Bascom. With this code you will get a quick
success.

After compiling and programming the module the display should show a yellow background
and a blue line. That’s all:

Hint: If blueline.bas
usual standard problem:

You did not enter (btw: this is only valid for Bascom) the needed numbers of HWSTACK;

numbers (see also page 65).

A nice example how to use the different commands can be found in the folder \sample with
graphics\. There, three full-size-pictures with different graphics mode (64.536 colors, 256

 with compressed data) are showed.

We now suggest that you go and read this manual from beginning to end quickly

or just specific chapters as you need.
manual in detailread again either the full

 With this code, you will get a quick success.lems.

page 11 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

The code (WinAVR C):
The C-Code is similar set up as the Bascom-Basic code: specific subroutines are defined as a
function and are beeing called when needed.

The following files are beeing used during the compile-process and need to be available (in-
clude):

glcd-Display3000-211.h

• definition of all functions
• definition of the used constants (e.g. colors)
• definition the ports for the display communication

glcd-Display3000-211.c

• includes all subroutines for setting up the pixels for the display
• includes the SPI-output software code
• includes an alternative for the SPI-output (manual setting of data bits and clock, e.g.

for controllers without any integrated hardware SPI)

The first programming in WinAVR
If you want to be sure that you can do the programming of the module correctly, just start
with the program blueline.c on our CD. This Code contains only a few possible prob-

After compiling and programming the module the display should show a yellow background
and a blue line. That’s all:

We now suggest that you go and read this manual from beginning to end quickly
to get a brief overview. Then you might

 – then no parameter pa

advantage that you allways can pass manualy

because they want to know exactily what is

a bit faster and more efficient but than it
our code. We could have made the codeenced programmers, being able to fully understand

use the most efficient way to
recognize that we did not use the display. You will

page 12 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Driving the display – general comment (C and Basic):
Our sample software shows how to

create a function. We wanted that anybody, even unexperi-

would be much more difficult to understand.

But no problem: you do not need to understand the display and its driving. You can just use
our subroutines without knowing exactly what is going on there. That’s pretty normal: usu-
ally most programmer do not disassemble the Print-Command of a programming language

happening there – they just want to use it.

If you only want to use our display routines, you may just use the sample program as a tem-
plate and start writing your own program. If memory is becoming a problem, just throw out
some code sequences you do not need (e.g. in the Basic code: just delete in LCD_Window
the code for any needed orientation directions or in the LCD_Bitmap code these parts of
bitmap conversions you do not need.

Comment to Bascom: With our existing subroutines the commands showed on the next
page are available. These are beeing called with a preceding Call command. This has the

a needed parameter (e.g. you may enter the
command CALL LCD_Box(0,0,10,10,red) directly. But there is a disadvantage: Bas-
com needs to place all parameters on the stack thus needing a lot of time and memory.
You may change the code to use two different strategies:
a) Eliminate the byval command at the definition – you then can only use variables for passing
parameters (example above: you first need to define some variables like Color_tmp,
X1_tmp, X2_tmp etc. – then you pass the needed parameters to these variables (x1_Tmp=0
… Color_tmp = Red and then use the command
CALL LCD_Box(X1_tmp,Y1_tmp,X2_tmp,Y2_tmp,Color_tmp)
b) You define all subroutines as a “regular” subroutine, called with the command Gosub.
You will then have to define also all variables first, then you call a subroutine with a
Gosub LCD_Box ssing is possible, that’s why you need to set the
variables needed by the subroutine manually first. More on this at page 66.

– this you should d always at left and below

widht and double height in dark red letters
on yellow background.

or at 256 color modes, it also defines if these are compressed or uncompressed.

turned portrait mode – the same with landscape)

page 13 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Your new commands for the display (Bascom Basic)
The following commands are now available for you:

Orientation = Portrait | Portrait180 | Landscape | Landscape180
Here you define, which reference (0,0) the following outputs will use (portrait mode or 180°

Graphics_mode = 65k_uncompressed | 65k_compressed
|256low_uncompressed | 256low_compressed |
256high_uncompressed | 256high_compressed |
Defines if the following bitmaps are coded in 65.536 color mode, in 256 out of 65K colors

Call LCD_CLS
Clear screen with white background

Call LCD_Print (String, x, y, Font, ScaleX, ScaleY, FColor,
BColor)
Prints a string at position X and Y with the given font number. The next parameters are X-
scaling, Y-scaling (e.g. 3, 2 means: triple width and double height) followed by foreground-
and background-color.

Example: Lcd_print("Hello World" , 1 , 10 , 2 , 1 , 2 , Dark_red , Yellow) displays “Hello
World” at x-y-position 1,10 with font 2, normal

Numerical variables will need some preparation for printing them on the screen with
LCD_Print. More about this and about printing variables containing numbers and not strings
at page 25

Call LCD_Plot (x, y, Type, Color)
Displays one single pixel at position X and Y. Type = 0 (or Thin) means 1 Pixel large; Type =
1 means 2x2 pixel wide (the second pixel is adde
take in mind if you place pixel at the outer border of the display as they otherwise would be
set in an unseen area .

Call LCD_Draw (x1, y1, x2, y2, Type, Color)
Draws a line from X1,Y1 to X2,Y2. The direction does not matter. This algorithm works
only with integer and is very quick. Parameter Type: see LCD_Plot

Call LCD_Box (x1, y1, x2, y2, Color)
Draws a filled box. Important: X1 and Y1 need to be the upper left coordinate; X2 and Y2
the lower right corner. Parameter Type: see LCD_Plot

Call LCD_Rect (x1, y1, x2, y2, Dicke, Color)
Draws an unfilled rectangular from X1,Y1 to X2,Y2. Parameter Type: see LCD_Plot

Compressed=1 the subroutine ex

page 14 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Call LCD_Bitmap (x1, y1, x2, y2)
Opens a “window” and fills it with any many bitmap data as the window pixel has. The bit-
map format has to be set by the command Graphics_Mode. These bitmap data needs to be
converted with our graphics tool GLCD_Convert on our CD and can be provided either as
a bunch of Data lines or as a binary file. With “Bitmap” you turn over the array name of the
bitmap.
X1 and Y1 need to be the upper left coordinate; X2 and Y2 are the lower right corner. If

pects compressed pixel data.

page 15 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Your new commands for the display (WinAVR C)
The following commands are now available for you:

Orientation = Portrait | Portrait180 | Landscape | Landscape180
Here you define, which reference (0,0) the following outputs will use (portrait mode or 180°
turned portrait mode – same with landscape)

Graphics_mode = 65k_uncompressed | 65k_compressed
|256low_uncompressed | 256low_compressed |
256high_uncompressed | 256high_compressed |
Defines if the following bitmaps are coded in 65.536 color mode, in 256 out of 65K colors
or at 256 color modes, it also defines if these are compressed of uncompressed.

LCD_CLS (Color)
Clear screen with white background (C: with a given color)

LCD_Print (String, x, y, Font, ScaleX, ScaleY, FColor, BColor)
Prints a string at position X and Y with the given font number. The next parameters are X-
scaling, Y-scaling (e.g. 3, 2 means: triple width and double height) followed by foreground-
and background-color.

Example: Lcd_print("Hello World" , 1 , 10 , 2 , 1 , 2 , Dark_red , Yellow) displays “Hello
World” at x-y-position 1,10 with font 2, normal widht and double height in red letters on
yellow background.
Numerical variables will need some preparation for printing them on the screen with
LCD_Print. More about this and about printing variables containing numbers and not strings
at page 25.

LCD_Plot (x, y, Type, Color)
Displays one single pixel at position X and Y. Type = 0 (or Thin) means 1 Pixel large; Type =
1 means 2x2 pixel wide (the second pixel is added always left and below – this you should
take in mind if you place pixel at the outer border of the display as they otherwise would be
set in an unseen area .

LCD_Draw (x1, y1, x2, y2, Type, Color)
Draws a line from X1,Y1 to X2,Y2. The direction does not matter. This algorithm works
only with integer and is very quick. Parameter Type: see LCD_Plot

LCD_Box (x1, y1, x2, y2, Color)
Draws a filled box. Important: X1 and Y1 need to be the upper left coordinate; X2 and Y2
the lower right corner. Parameter Type: see LCD_Plot

LCD_Rect (x1, y1, x2, y2, Dicke, Color)
Draws an unfilled rectangular from X1,Y1 to X2,Y2. Parameter Type: see LCD_Plot

LCD_Circle(x1, y1, Radius, Fill, Type, Color)
Draws a circle. Center at X1, Y1 with a given radius. If Fill=1 the circle will become solid,
with Fill=0 only the frame is beeing drawed. Type defines the thickness of the frame (1 or 2
pixels)

For this reason you shall reduce the size of yo

bitmap data as the window pixel has. Here I byte
in RGB332 format). These bitmap data needs per pixel is expected (need to be available

Open a “window” and fills it with any many

page 16 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

LCD_Bitmap_65k(x1, y1, x2, y2, Bitmap, Compressed)
Opens a “window” and fills it with any many bitmap data as the window pixel has. Here two
byte per pixel are neede (65k colors). These bitmap data needs to be converted with our
graphics tool GLCD_Convert on our CD and can be provided either as a bunch of Data
lines or as a binary file. With “Bitmap” you turn over the array name of the bitmap.

LCD_Bitmap_256low(x1, y1, x2, y2, Bitmap, Compressed)

to be converted with our graphics tool GLCD_Convert on our CD and can be provided
either as a bunch of Data lines or as a binary file. With “Bitmap” you turn over the array
name of the bitmap.

LCD_Bitmap_256high(x1, y1, x2, y2, Bitmap, Colortable, Com-
pressed)
Opens a “window” and fills it with any many bitmap data as the window pixel has. Here 1
byte per pixel is expected. This mode needs a separate color table which array need to be
provided at parameter “Colortable”. These bitmap data needs to be converted with our
graphics tool GLCD_Convert on our CD and can be provided either as a bunch of Data
lines or as a binary file. With “Bitmap” you turn over the array name of the bitmap.

All Bitmaps: X1 and Y1 need to be the upper left coordinate; X2 and Y2 are the lower
right corner. If Compressed=1 the subroutine expects compressed pixel data.

Limitations of the WinAVR C-Compiler / GCC
Limitation 1: The address range of a ATMega128 or ATMega2561 is separated in 64KByte-
blocks. GCC (which is being used by the WinAVR) is not able to use flash constants which
are positioned above the first 64K block. Because of this WinAVR will position all constants
like bitmap data, pixel data of fonts in the first 64K so the program can access these. The
problem: If you have more than 64K of this kind of data, you will not have access to them. If
you try to access you always get the data from the first 64K block. You will recognize this if
fonts are not being written or unexpected bitmap pieces are showed.

ur graphics elements with the GLCD_Convert
tool on our CD to a total size below 64K.
Hint 1: Use the eeprom for the font data if you do not need the full eeprom. The eeprom is
a perfect memory for this kind of data – just write them once and they are always available
without needing the main memory.
Hint 2: Instead of using 2-Byte graphics, create an indexed graphics file (such as GIF) in a
graphics program first. Try to use the same color table with all graphics so you only need to
save one color table.

Limitation 2: The pointer for accessing these flash constants (such as bitmaps) are fixed as
signed int (thus -32768 up to 32768). The negative numbers are not usable so we have
32768 possible bytes left in an array. This is the maximum of one complete data block you

are using a similar code base, we do use Basic
 explaination about the display programming an easier reading, we decided not to split our

two limitations, we would appreciate your

46464 byte which cannot be displayed at once! The

page 17 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

can access. The problem: One full size graphics (full color) needs 132 x 176 pixel x 2 byte =
only workaround: split the graphics in a

graphics program and display both parts one after another (part 1 from postion 0,0 and part
2 from 0,88).

For these above reasons it would always be advisable to use 1Byte graphics instead (e.g. with
color table).

If you know any workaround for these
help.

These two limitations are not happeing (as far as we know) with commercial C-compilers
like CodeVision or Keil and will also not happen with the Basic-Compiler Bascom.

Comment for programmer who are using C as their programming language: For

between Basic and C. As both software drivers
as our example codes at the following pages. As the C code is very identical even a non ex-
perienced C programmer will be able to get the idea.

page 18 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

The data output to the display

In principle the output of data to the display always functions in the same way:

1) By setting the „window coordinates“ you communicate to the display, within which
range of the display RAM the following data (pixels) has to be placed (fortunately you
do not have to update or refresh the complete display content if just a defined area is
changing – e.g. a single character).

2) Each sent data now is interpreted from the display as a pixel and will be set. It starts

with the upper left corner of the opened “window” and moves forward one position
to the right automatically. If the right border of the window is reached the pointer
automatically moves to the beginning of the next line.

3) The wire DC (Data / Communication ID) of the display tells it if the received data is

containing pixel data or a command. A “1” at the DC line means command, a “0”
means pixel.

4) A pixel usually needs 2 Byte of data as each pixel can consist of one of 65,536 colors.

For a full page picture the software has to transmit 132 x 176 pixel x 2 byte = 46
KByte of data or 371,712 bits.

show the output direction of the sent bits (pixel), therefore from left to right.

rger font would use 9x the memory. For most applications the

page 19 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

The output window
After determination of the output data, an output window is "opened" and the needed pixel
data are sent. At the display of a character in font the output window is always exactly 6
pixels wide (the font uses 5 pixels plus one empty column as the characters usually shall not
stick to each) as well as 8 pixels high. Larger fonts are appropriately higher and/or broader.

The definition of the output window happens in the sub-routine LCD_Window by four
values. X and Y position of the left upper corner as well as X & Y of the right lower corner.
Using font 1 with 1 x scaling the lower right corner is always 6 pixels further on the right
and 8 pixels down than the top left corner. The distance grows by using larger fonts or by
using a scaling factor. Using scaling, the pixels are just being multiplied by the scaling factor.
This saves storage because we must not save font data for the larger font but at the down-
side these scaled characters looks a little "rougher" through this, though. A twice large signs
could of course be defined in data (array) lines in a higher resolution but this font would
then need 4 times the memory of the smaller font (2 times the pixel vertically x 2 times the
pixel horizontally); a 3 times la
enclosed fonts should be sufficient by using our scaling routine – at these you may also al-
ways add any special character if you need.

Our routine LCD_Window uses the window positions as follows:

X1 and Y1 are defining the upper left corner, X2 and Y2 the lower right corner. The arrows

x2, y2

x1, y1

131,176

0,0

Full display area

Output
window

X-Axis

Y-Axis

es, you are not realy concern with this,
directions).
and are explained more precisely at the end of the manual (chapter output

page 20 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

To define the output area, the following command sequence of the display is used:

Start: EF08h: Starts a command sequence with parameters for the definition of the output
window.
Command 18h – Output direction; (00h Portrait, 03h Portrait turned by 180°, 05h
Landscape, 06h Landscape turned by 180°)
Command 12h – Output area start X, followed by X-Position as parameter (1 Byte)
Command 15h – Output area end X, followed by X-Position as parameter (1 Byte)
Command 13h – Output area start Y, followed by Y-Position as parameter (1 Byte)
Command 16h – Output area end Y, followed by Y-Position as parameter (1 Byte)

Example: To draw a yellow box, sized 10x10 pixel to position X=20 and Y=50 in Portrait
mode, the following sequence is necessary:

EFh 08h
18h 00h
12h 14h thus from X-Pos. 20 (=h14)
15h 32h thus from Y-Pos. 50 (=h32)
13h 1Dh thus to Y-Pos. 29 (=h1D)
16h 3Bh thus to Y-Pos. 59 (=h3B)
With this, the output area (output window) is defined;
now 100 times „FFh E0h“ follows (= 100 yellow pixel)

The modes for landscape or the 180°turned modes are a little more complicated

If you use our predefined software routin
however, further since we already carry out the necessary conversions there. No
matter how you then turn the display: The position 0,0 is always at the top left of
the display and X2 and Y2 is always at the lower right.

page 21 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

The outut of characters

Characters and numbers with fixed width

Determine the graphical data for each character
We would like to start with a fundamental summary of the operation of our software at the
output of letters or numbers:
First the graphical data for each character are gathered from predefined tables/arrays and
then transmitted with the necessary colour parameters to the display pixel by pixel.

The software (sub-routine LCD_Print) reads the submitted string character by character, de-
termines the corresponding ASCII value and then selects the data from the corresponding
storage position.

With the software to our modules we provide 2 fixed fonts a fine, small font (font 1) with a
size of 5 x 8 pixels as well as a larger and more detailed font (font 2) with a size of 8 x 14
pixels.

For each character the data for the pixels are pre-defined in the DATA lines (Bascom: at the
end of the program) and in separate files for C (Fontxxx.h – these will be automatically in-
cluded during compilation).

Font 1 (5x8)

A „d“ of font 1 looks like shown at the following graphics:

If you now calculate the bits of each columns
you will get:

Exactly this values you will find in the data array
at the position where the “d”-data is stored.

Row Binäry Decimal Hex
1 00000001 1 01
2 00000001 1 01
3 00001111 15 0F
4 00010001 17 11
5 00010001 17 11
6 00010001 17 11
7 00001111 15 0F
8 00000000 0 00

8 pixels you need to store two bytes per pixel

page 22 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Font 2 (8x14)

The character “d“ of font 2 is beeing stored using the same principle. As this font is larger,
more data has to be stored. A “d” of font 2 looks like:

Again, you will find these values stored at the array at font 2.

Using this principle, you can now create any character you want (could be foreign extended
characters or icons) and add it to our existing font table.

Fonts with a larger width:
An adaptation to a larger height is relatively easily to manage (just add more rows of data)
but creating a font with a width of more than
row – then you may create fonts up to 16 pixel width. However you need to change our
display subroutine LCD_Print as this is actually prepared to show fonts with 1 Byte rows –
but changing this is not too difficult. But again: We already deliver a scaling routine so you
can display any of our fonts today with any scaling you like (e.g. with triple width and 5x
height).

The storage requirements of fonts with a fixed width
Right now we need 102 (this already includes 7 predefined German characters) characters
with 8 bytes each = 816 bytes for the character table of font 1 and 102 signs at 14 bytes
each (1428 bytes) for the character table of font 2. We would like to mention this again: you
may save the font data in the internal eeprom of you microcontroller (if any) thus saving
2KByte of valuable memory.

Row Binäry Decimal Hex
1 00000000 0 00
2 00000000 0 00
3 00000000 0 00
4 00011100 28 1C
5 00001100 12 0C
6 00001100 12 0C
7 00111100 60 3C
8 01101100 108 6C
9 11001100 204 CC
10 11001100 204 CC
11 11001100 204 CC
12 01110110 118 76
13 00000000 0 00
14 00000000 0 00

page 23 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Characters and numbers with variable width (proportional font)
Proportional fonts does use different width for each characters and these uses a different
amount of space on the screen. Examples are shown below:

Arial (Proportional)
iiiii
wwwww
wwwww
ooooo
eeeee
mmmmm
nnnnn

Courier (fixed)
iiiii
wwwww
wwwww
ooooo
eeeee
mmmmm
nnnnn

Proportional spaced fonts are good for longer regular texts but difficult to handle if you want
to show text line which should align. Usually for regular output a fixed font will be used, only
if you print larger amounts of text, proportional fonts make sense.

We are planning to develop some output routines for fonts with proportional width. This is
planned for the future development of this library.

The selection of the font data

data from you. We would appreciate to get these array
, French, etc.) we would language (e.g. SpanishIf you add some characters needed by your

ys the shortage of memory. Therefor, we deliver our font
data for the 256 Byte ASCII table. The prob-treatment if we could provide the complete font

 shows a routine with some speci

page 24 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Special case: extended characters (like umlauts and other foreign characters)
The subroutine Lcd_print al treatment if (in this case)
German extended characters are being used. This because, these characters (äöüÄÖÜß) are
placed far away in the 2nd 128 Byte of the usual ASCII-table. We would not need any special

lem with microcontrollers is alwa
table only with the ASCII characters 32 (“ “ space) up to ASCII 125 (“}”). Then from ASCII
127-133 we are placing “äöüÄÖÜß” which would otherwise need to be at position 228, 246
etc. Of course, we then have to include a special treatment if these characters should be
displayed. This is what the Select Case code is doing in the subroutine LCD_Print. If you do
not need special characters, just delete this part – this speeds up this routine a bit and it
saves you some memory.

If you want to create your own characters, just do the same way we did with the German
characters.

then include them on our CD
for all the other users needing the same.

With Bascom-Basic you may read such font data, stored in Data lines with the command
Lookup. Data which could (should) be stored in the Eeprom can be read with a similar
command: ReadEeprom.
The principle of both commands is the same: B = Lookup(X, Font2) reads entry # X from
the Data areas starting with the label “Font2” and stores this read entry at the variable B.

Example. If the Data-line looks like this…..
Font1:
Data &H38 , &H44 , &H44 , &H44 , &H7F, &H44 , &H78 , &H44

The variable B will contain a &H78 after B = Lookup(6, Font2)

page 25 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

The output of a string
To display a string at the display, the subroutine LCD_String works through each single
character of the given string. This subroutine needs some more parameters like:

• X-position of the string (start)
• Y-position of the string
• Font number
• Horizontal scaling
• Vertically scaling
• Color of font
• Background color

This subroutine then creates the needed data for pixel and sends it to the display.

The output of numbers (or numeric variables) instead of a string
If you want to output a number instead of a string, you first must convert this number into a
string.
Example:
A=123
Call LCD_Print(A, 10,10,……)
…will not work as A is a numeric variable and our subroutine only works with strings. Thus
you need to change the type first:
A=123
Tempstring = Str(A)
Call LCD_Print(Tempstring, 10,10,……)

Hint for users of Bascom-Basic: There is a great command in Bascom called Format.
With this you may format the content of a numerical variable during the placing in a string
variable. You then can for example always align these to the right or include leading zeros,
add decimal points at needed positions etc. (very similar to what Microsoft Excel® can do in
a cell). This command is very useful for writing numbers to the display.

In C this transfer from numeric to string needs to be done with itoa() or sprintf().
Example:
A=123
itoa(a, tempstring, 5);
LCD_Print(tempstring, 10, 10, ……);

program (now approx 3 KByte of code) also runs with the

around a bit. This program uses the drawing commands:

, each color needs two bytes

self explaining: One after another, boxes with a height of 12
a row of 12 random colors. The little program is probably

discussed later (starting from page 49).

page 26 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

The output of colored graphics
At the output of multi-coloured graphic data the storage requirements are quite large as
eachs single pixel not only needs one bit for on/off but also the information about the corre-
sponding color. As the display itself only knows by default a mode with 65,536 colours, i.e.
every pixel covers 2 bytes of colour information. The theory of the colour modes is being

On the CD there is a file Colorbars.bas. This produces

pixels are being drawn.
As this is a 65.536 color display
(16 bit) on color information. The photo shows how it
should look like.

Look at the sample program Colorbars.bas and play

• LCD_Draw
• LCD_Box
• LCD_Plot

As we deleted the font and bitmap subroutines, this demo

Bascom demonstration compiler on our CD.

quickly learn the theory behind it.
ssing. But you must not be too afraid. You will
bitmap graphics, you must first learn some-

This exact sequence will be sent if you set

 blue (later you will

page 27 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Minimal goal: setting one single pixel:
If you want to set one single pixel to the display you just have to set a 1x1 “window” and
you then send the needed color of the pixel. A single blue pixel at X-Y-position 100,50 (Hex:
64h, 32h) will need the following sequence of data:

EF, 08, 18, 00, 12, 64, 13, 32, 15, 64, 16, 32, 00, 1F

Explanation:

EFh, 08h: Start of sequence
18h, 00h: Portrait-mode
12h, 64h: X1 = 100
13h, 32h: Y1 = 50
15h, 64h: X2 = 100
16h, 32h: Y2 = 50
00h, 1Fh: learn why this is blue)

one blue pixel with our subroutine LCD_Plot.

Before we now go into details about displaying
thing about the color systems and data compre

the appropriate color. This is the difference to a monochrome display.
, but also still need the information about

page 28 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Introduction to the color system of the display
An output of multi color graphic data always needs memory and time of your microcontrol-
ler as each pixel not only needs 1 bit for on or off

The usual graphical formats such as BMP, JPG etc. offers 16 million and more colors, this
means 24 bits for each individual pixel – 8-bits for each color (red, green and blue – by mix-
ture of these three colors every other color is represented). For each of these 3 colors
there are thus 256 intensity values available.

Usual graphic programs work with CMYK (only needed for printing on paper and therefore
not relevant for us) and RGB colors (RGB: Red, Green, Blue). There you can represent
each color in 256 shades (0 to 255). From the combination of red, green and blue we re-
ceive all other visible colors. The combination of 256 x 256 x 256 colors results in an abun-
dance of 16 million colors at the PC.

Examples of the color mixing at the PC:

Red Green Blue Result Remark Representation

0 0 0 Black No color portion of a color
255 255 255 White Each color to 100%
255 0 0 Red 100% red, no other color
136 0 0 Dark red Only 50% red
0 255 0 Green 100% green
0 0 255 Blue 100% blue

255 255 0 Yellow Ever 100% red and green mixed
136 0 136 Lilac Ever 50% red and blue mixed
119 119 119 Grey For each color 47%
255 136 0 Orange 100% red and 50% yellow

However a screen-filling graphics for our display with 132x176 pixel (=23,232 pixel) would
need 3x8=24 bit color information per pixel, that results in approx. 70 KByte program space
which we rarely have available in a microcontroller. Due to this fact one already sees that
we must reduce the amount of color information to reduce the memory usage.

HINT
If you want to check this: open PowerPoint or a graphics program. After drawing a box
you may change the color and you may select from 3 x 256 shades each of Red Green
and Blue.

 not impossible. Imaginable would be for exam-

two bytes of information. Our

page 29 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Native color modes of the display: 256 or 65.536 colors
The present display works with 256 or 65.536 colors, depending on the startup initialization
routine. At the 256 color mode each pixel is represented by one byte of information (=256
possible values). At the 65.536 color mode, each pixel needs
software library is concentrating on the 65K color mode but can be quickly adapted to the
256 color mode (we will give you some instructions later in this manual).

One advantage of the 256 color mode is its doubled speed as we only need to transfer 8 bit
per pixel instead of 16 bit. Unfortunately the display cannot be switched between 65K color
mode and 256 color mode during its operation mode. It needs a complete new initialization
routine (call of LCD_Init).

Mixing both modes are therefore difficult but
ple a startup with a nice 65K color logo, then a new initializing and a further working of the
main program in 256 color mode.

One disadvantage of the 256 color mode is the restriction to 256 given colors which you
cannot define (these 256 color are predefined by the 3 bit for red and green and 2 bit for
blue as explained previously). However, for many applications, which are using only plain
text and some simple graphics, this mode if fine. Photos or logos are usually difficult to be
used in the 256 color mode.

eory at the follwing pages:
ces. For this, we prepared two alternatives

for green. With 16 Bits you now have

bits: 11111000 (=248 decimal or F8 hex) and

The first byte contains 5 bits for red and the 3

5 Bits for blue
6 Bits for green
5 Bits for red

 unsigned int (C)). These 16 bits are with 2 Bytes of storage is being used (Word (Bacom),
color information. Usually for this, a variable type

page 30 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

65,536 (65K) colors

At the 65K-mode each pixel needs 16 bit

beeing splitted as follows:

These 16 bits are placed in two sequential bytes

Byte # 1 Byte # 2
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
R R R R R G G G G G G B B B B B

most significant bits (MSB) for green, the sec-
ond byte the remaind 3 bits for green (LSB) and the 5 bits for blue.

A 100% red pixel would now need the color
00000000 (=0); (total of the double byte value: binäry 1111100000000000 or 63,488 deci-
mal).
green = 00000111 (7) and 11100000 (224) = 0000011111100000 = 2016 decimal etc.

Thus: 1 pixel = 2 byte color information; 1 full size picture = > 45 KByte

The graphically demonstration: each 32 shadings for red and blue and 65 possible shadings

32 x 64 x 32 = 65.536 color combinations at your
hand.

Well, very very rarely you will ever need 65,536 color at the same time at such a small dis-
play. This would be a tremendous waste of resour
and are going to show you the th

h is fine for many usages, but there are also
many usages where this might become a problem.

blue shades possible, as 0 means no blue=black).
 there are only 3display of a photo, etc... is needed (e.g. only 4

This 256-color-mode (RGB332) has one big disa

for blue. With 8 Bits you now have

Thus: 1 pixel = 1 byte color information; 1 full size picture = > 22 KBytes

2 bits for blue
2 bits for green
3 bits for red

 (= 3 bits of color information each)
the following

e. With this mode usually, we will have

is recommendable. This mode is For the usage with a microcontroller a 256-color-mode

page 31 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Alternative 1: 256 color mode (RGB format 3-3-2)

effective (low memory usage) and is often sufficient for many needs.

Well known and often used is the RGB 332 mod

Red and Green will get 8 shades each
And blue will get 4 shades

Pixel-Byte

7 6 5 4 3 2 1 0
R R R G G G B B

The graphically demonstration: each 8 shadings for red and green and 4 possible shadings

8 x 8 x 4 = 256 color combinations at your hand.

dvantage: While it is very useful for showing
simple and clear graphics (like chart, drawings etc.) it shows it limitations quickly when a

shades of blue – actually

The color range is therefore very limited whic

65,536 colors

bits-format

65,536 colors

bits-format bits-format Blue: 2bits
Green: 3bits
Red: 3bits 65,536 colors value

blue bits, we need to correct the 30 into a 31.

dings. Therefore, we multiply with 10
set), we do not have to correct anything here.

 green. As 7x9 = 63 (111111 = all bits already with 9 to use the band width of the 6-bits for
 (0-8 dec.), so we need to multiply

d (all 5 Bits to 1).
ant 100% red, we have to correct this now: We

ly this 3-bits-value with four and get value

or (this is what we are doing in our For this, you might either use a so called lookup-table,

not display the color correctly.
color value – otherwise the display wouldcolor values (1 byte) back to a 65k (2 bytes)

es only half the memory), we

eed / use 8 bits (= 256 colors).

page 32 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Usage / converting of a 256-color (RGB 332) graphics

There are two possibilities to work in this mode:

Alternative 1: During initialisation the display will be switched into the 256 color mode.
Then, all pixels will only n

Alternative 2: The display is working in the 65K color mode. If we want to use 256 color
mode (usually because it consum need to convert these 256

Our subroutine Convert256 does this job – it converts these 256 possible RGB332-
colors back to the expected double-byte color.

What we do there is calculating the correct color. These 8 possible red/green and 4 blue
shadings correspond to a fixed value. We calculate the 1 byte value to a 2 byte value but we
still have not more than 256 different colors.

subroutine), calculate the correct number.

Bit values of

Red-value
of this
color in 5

Red

Green-
value of this
color in 6

Green

value

Blue-value
of this
color in 5

Blue

value

0 0 0 0 0 0 0
1 4 8,192 9 288 10 10
2 8 16,384 18 576 20 20
3 12 24,576 27 864 31** 31
4* 16 32,768 36 1,152 - -
5* 20 40,960 45 1,440 - -
6* 24 49,152 54 1,728 - -
7* 31** 63,488 63 2,016 - -
*= only red and green

The red value, which finally will be placed into 5 bits (thus max. 32 shadings), originally is
only present with 3 bits (8 shadings). We multip
between 0 and 28. As the “7” originally me
correct the dec. 28 (=11100) to a dec. 31 (=11111), to get a 100% re
The green value originally is also present with 3 bits

The blue value is present originally only with 4 sha
and get the 4 possible values 0, 10, 20, 30. Here we need to correct again: to switch on all

interesting for you than the RGB332 mode.very likely, this will be much more

generally brighter you then save (e.g. to show the blue value value of each color as you like

Example: The original color yellow from the 256-color-mode (RGB332) is decimal 252, and

page 33 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

binary 11111100 – this will be separated first into its red, green and blue values:
 111 = red: decimal 7
111 = green: decimal 7
00= blue: decimal 0

Converted, this gives a double byte value of 63,488 + 2,016 + 0 = 65,504 or binary
1111111111100000

Another example: bright green with binary 00111110 (decimal 62) gives 8,192 + 2,016 + 20
= 10,228

Of course, you may set up a lookup table in your software (this probably will speed up the
conversion process as no calculations are needed) and then you might change the shading

0,15,25,31 instead of the 0,10,20,31 of our calculation).

STOP: Before you now dig too deep into this mode, read first the upcoming alternative 2 –

use the only one color
sent). Next you load each single graphic file

Then, you just save it once and
memory. In most graphic programs, you are able

 having each file using its own one. This saves you additional

a picture with 176 x 132 pixels ts of information per pixel.

more than 256 colours can not be contained
in one file.
with indexed colours and then is also is valid:

every day. The usual GIF graphics always work Graphics like this, you meet on the internet

phics will come with a color e color table). A 256 color gra

entry containing a 16 bit color), etc...

data of the graphics file contains a pointer to a table from which pixel, the individual pixel
instead of assigning the colour to the individual This is done by a predefined colour table.

colors and another small one with 256 completely different colors and display both at the
same time.

more than 256 different ion: you may use no

 the display can be used here.

page 34 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Alternative II : xxx out of 65,536 colours (colour table)
This mode works with indexed colours (also called palette mode) and is far more interesting
than the previous mode (RGB 332). It permits the use of indexed graphics files (e.g. : GIF or
BMP). All 65,536 possible colours of

Instead of the limited 256 colors of the previous mentioned RGB332-mode (e.g. maximum
of 4 blue shades) you only have one limitat
colors at the same time at one graphics file. If you like, your graphic may contain 200 blue
shades and 56 red shades. You also may use one small graphics file (e.g. an icon) with 256

the correct colour is read (th
table with 256 entries, a 16 color graphics comes with a color table with 16 entries (each

The advantage of this mode: Every single pixel can take use of the full 16 bit colour spec-
trum, however needing only 8 bi
now only needs 23,232 bytes despite the full colour spectrum of 65,536 colours instead of
46,464 bytes. One must add the colour table of a size of up to 512 bytes though (per colour
2 bytes of colour information for the use of 65,536 colours).

Hint 1: If you are going to use many similar graphics, best would be to use the same color
table for all graphics instead of

to save and load a color table in GIF-mode.
you load it in for all the other files you want to save in GIF

mode (e.g. in Adobe Photoshop® at menu “Image – Mode – Color Table” and then “Save“).
Of course, this makes only sense when all your graphics are looking very similar regarding
the used color. Another hint: If you know what graphics you are going to use: Create one
big graphics file where you place all of your graphics side by side. Then create a 256 color
color table and save it (e.g. Photoshop now will take care that all needed colors are pre-

and save it to GIF by using the color table you
just created. Then all your graphics files will look nice and all will
table.

ubroutines today. If you need this right away,

page 35 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Hint II: If you want to use a graphics with only 16 or less colours, another useful variant
takes effect: The pointer on the 16 possible color table cells needs only 4 bits. This means 2
pixels may fit in every byte of the pixel data now. We need 4 pixels in a byte fit and 8 pixels
in a byte fit at only 2 colours at only 4 colours.

 65,536 colours 256 colours 16 colours 4 colours 2 colours

Storage re-
quirements
Frame with 176
x132 pixels

46,464 bytes 23,232 bytes 11,616 bytes 5,808 bytes 2,904 bytes

To use such graphics, please enter the preferences in our tool GLCD_Convert. Then enter
Palette mode and then check at data output “1-8 pixel per byte”.
However, this format is not being used by our s
you need to change our subroutines by yourself.

 before and C needs g 8 bits value (Basic needs

ware from 16 bits to 8 bits mode.

used in the 65K-color-mode, therefore we only

pixel). For using the 256-color-mode,
always transfer 16 bits per 65K-color-mode (= we

u like to use the 8 bits, 256 color mode of the
Needed software adaption for the native 256-color-mode (8 bits per pixel)

lete. As you understood the

page 36 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

You need to change our software a bit if yo
display as our software only works in the

 you need to do some changes.

Remark:
We expect that the display usually is beeing
ship our software for this mode. Supporting both in one library would expand this too much.
If you want to use the 256 color mode (not only for testing), send us a mail and if we re-
ceived enough requests of our users that a library for 256 colors is needed, we will create
one. But as it is not very difficult to change our software to this, you probably will be able to
do this by your own.

Needed steps for this:
(Important: At the initializing sequence you need to change 7F3F to 7F1F):
The following steps shall be a hint and are probably not comp
color modes and the principles behind it, it should be no problem for you to adapt our soft-

a) new definition of colors
Actually, our colors are predefined as 16 bit colors. You need to change these constants in
the software to the followin &B 0b)
Blue = 00000011
Yellow = 11111100
Red = 11100000
Green = 00011100
Black = 00000000
White = 11111111
Bright_green = 00111110
Dark_green = 00010100
Dark_red = 10100000
Dark_blue = 00000010
Bright_blue = 00011111
Orange = 11111000

1 byte per pixel. display is expecting bytes of color information and the
t be used in the 256-color-mode

transferred, you need to change the routine to Where actually 2 bytes per pixel are beeing

the numeric format Word (Basic: Word; C: unsigned int) – these need to be change to a
x etc... are working with color variables with

Graphics with 65.536 colors can’

b) Changing of the format of the variables at all display routines
All display routines such as LCD_Print, LCD_Bo

byte format (Basic: Byte; C: Char).
Basic: The value 5808 need to be changed to the half: 2904 at the routine LCD_CLS.

c) Changing of the output routine

that effect, that it is only transferring one byte (transfer the byte color value directly by SPI).

Bitmap graphics

of course, as these have 2

C:
The only available bitmap routines are: Bitmap_256low_compressed and Bit-
map_256low_uncompressed.

Instead LCD_SPI_Int(CalcColor(PixelColor256)) you will call
LCD_SPI_Byte(PixelColor256) in these routines

Basic:
Only available graphics mode is: Graphics_mode=256low_uncompressed and
Graphics_mode=256low_uncompressed

At the subroutine Sub Lcd_bitmap change the line
Spiout Data_array(1) , 2 into Spiout Data_array(1) , 1

At the subroutine Sub Interpret_pixeldata delete the line
Gosub Convert256 and replace by Data_array(1) = Data_out

In C:
You need to setup a new routine LCD_SPI_Byte which works like LCD_SPI_Int, but
transfers only one Byte.

Thus:
void LCD_SPI_Byte(unsigned char Value)
{
 SPCR |= _BV(SPE);
 SPDR = Value;
 LCD_Wait();
}

In Basic:
Spiout Data_array(1) , 2 will be replaced by Spiout Color , 1
The routine Set_color does not need to be called anymore

will be stored in 2 bytes number.
esented by 2 bytes of color informa-

lour-mode as an example): In detail (here using the 65,536-co

decompression routine like JPG would not be po

page 38 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Compression / decompression of graphics files
Our tool GLCD_Convert also offers an option for compressing the graphics files. Since the
program memory in the microcontroller is limited, a compression offers itself virtually. A

ssible with a microcontroller as it would
take too much memory and time. The relatively simple RLL (Run length limited) code was
therefore used here. We explain the compression method in detail now:

Lets first summarize this briefly: Pixels of the same colour which are repeated will be sum-
marized as [colour and # of apperances].

If one coloured pixel is present alone (no repeat, the next pixel shows a different color), this
data looks identical as without any compression.

Example:

Data representation:

h001F hF800 h07E0 h0000 hFFFF h001F hFFFF hF800 hFFFF h0000 h07E0 hFFFF

I.e If a pixel is never followed by an identical pixel, a compression is not possible.
12 pixels need 12 x 2 bytes = 24 bytes

If a pixel recurs, i.e. 2 pixels will have the identical colour, this pixel is present in
the data 2 times followed by the # of repetitions.

Example (6 blue and 4 white pixels):

Data representation:
h001F h001F h0004 hFFFF hFFFF h0002 h07E0 hFFFF
2 x blue Blue 4 x

repeated
2 x white White 2

x re-
peated

Green White

If at least 2 pixels succeeding one another are identical, the number of repeti-
tions is always inserted behind them.

Note: In the 65k color mode, each pixel is pr
tion. Then, also the number of repeats

At the example above, 12 pixels does need 8 x 2 bytes (=16 bytes) which results in a 33%
compression rate.

shadings at this mode. Here, the 256 color palettethe limited number of only 4 possible blue
-color-mode (RGB332), this graphics will not look very nice as of

or 5Kbytes (256-color-mode).only 13 Kbytes (65K-color-mode) sumes 46 KBytes of data or

in not coherent areas (the less a lot of different colours
than a picture which contains
of a picture which show only It is obvious that compression

It is obvious that compression of a picture

further occurrences; if no, it reads the next pixel. the pixel before; if yes, it reads the # of

page 39 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Special case 2 pixels: If a pixel colour succeeds one another only 2 times, the third byte
(which contains the number of repetitions) has the value 0.

Example (only 2 white pixels in the middle):

Data representation:
h001F h001F h0004 hFFFF hFFFF h0000 h0000 hFFFF h07E0 hFFFF
2 x blue Blue 4 x

repeated
2 x white Nothing

to repeat
Black White Green White

At this special case it is demonstrated, that compression not always will have a positive re-
sult. If you very often have a maximum of identical 2 pixels, the total usage of memory might
be larger than without compression.

The decompression:
Data compressed by the compression routine explained above, can be relatively easy de-
compressed by the microcontroller. It just has to check if a read pixel has the same color as

Compression and colour depth

which show only few colours is more promising
than at a picture which contains a lot of different colours in not coherent areas (the less
colors are used, the bigger the chance, that pixel colors are repeated again and again).

For this reason, 256 color pictures usually show a better compression result than 65K color
pictures.

Compression and colour depth

few colours is more promising

colors are used, the bigger the chance, that pixel colors are
repeated again and again).

For this reason, 256 color pictures usually show a better
compression result than 65K color pictures.

The Display3000 logo for example (see photo, also on our
CD), contains only 256 colors and offers several areas with
the identical color. Because of this is can be compressed by
76% (in 256 color mode) or 71% (in 65k color mode). It is a big difference if a graphics con-

Comment: In the real 256

mode would be the best choice.

If the data is stored in a 256-color-mode, of course only 1 byte for each

page 40 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Note:
pixel is being used then. Then, also the number of repeats is being stored in a 1
byte cell which means, only a maximum of 255 repeated pixels are possible. If
the number of repeats should be larger, the sequence starts again with 2 pixels
and then the number of remaining repeats.

7 (and this is the reason, why one single blue pixel follows Byte 8 is not identical to byte
Byte 3 is identical to byte 2 and will be repeated 4 times (Bytes 4-7)

cal to byte 2: no repeat

blue and 4 green pixels:

Example: 16-color-mode (= 2 Pixels per Byte)

yet, but you will be able

is case – single pixel are ignored.

colors only need 4 bits of information. We do not support this mode

2 + 255 + 2 + 21 = 280 blue Pixel

 repeats cannot exeed 255 as repeats are

page 41 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Compressing and using of indexed colors (palette mode)
The compress-algorythm of GLCD_Convert is identical when using indexed color mode.
Again, as with the RGB332-mode, the number of
only stored in a byte value.

Example: graphics with 256 indexed colors
Color table (here: 256 values)
Color 01 = blue Color 02 = green Color 03 = red
Color 04 = white …… Color 05 to FE…… Color FF = black

Example: (280 blue pixel)
 …Pixel 4

to 280…
Data representation:
h01 h01 hFF h01 h01 h15 h04 h04 h02 h02 hFF
2 x blue blue

repeats
255 x

2 x blue Remaining
repeats:
21
(280-2-
255-2)

White White White
needs
two
more
repeats

Green black

Special case with reduced colors and reduced memory usage (>1 pixel per byte)
As mentioned before, GLCD_Convert is able to store graphics, which just a few colors in a
more efficient way. By using only 16 colors, there is room for 2 pixels per byte as these 16

to reprogram the bitmap output routine if you need this.
The special case comes up if several pixel are stored in one byte. The compress algorithm is
always checking the output byte in th

Graphics with one red, 14
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9 Byte 10

Data representation:

h31 h11 h04 h12 h22 h24
h03 h01 h01 h01 h04 h01 h02 h02 h02 h02 h04
red blue blue blue 4

repeats
blue green green green green white

Explanation: Byte 1 is not identi

the other repeated blue pixels) and also the 4 green pixels does not fall in any byte frame
where a repeat would be possible.

start, we already placed several graphics files on

of options, including color reduction

of data consumes a lot of Flash memory (depending on size Beside the fact, that this amount

where your program can access

s been filled. The only difference is that now, each pixel

the µcontroller. Bascially After lots of theory, now to the real work with

page 42 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Creation and output of graphical elements / photos
the output is similar

to an output done with our subroutine LCD_Box: We open an output window and send a
lot of pixel data until the box ha
might have its individual color.

The biggest problem: As long as you do not create graphical elements by your program (as a
colored box), you need to save the pixel data somewhere
these data. This can be the program memory (flash) or the eeprom of the microcontroller.

and number of colors), you need to include these data into your software (either as a data
area in Basic or as an array in C).

There was no affordable software available which could deal with all different programming
languages and graphics formats and which exports a usable output. For this, the program
GLCD_Convert was delevoped for us. This comfortable Windows program allows you a lot

and indexing (more on this later).

The windows software GLCD_Convert.exe is beeing found on our CD. For your first quick-

 our CD at the directory \graphics. Just start
this program and play around.

The output window then shows you the data.
, the conversion process is started.

beeing saved in a configuration file, so you do
you select the needed conversion parameters. These are Settings/Preferences,

your selected graphic file.

and almost self explaining.Using this program is very simple

), the data for the microcontroller is showed.

this display, but we also kept in mind our fur-

page 43 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

The GLCD_Convert program
This program has been written exlusively for
ther developments so you will be able to use it also in the future.

Beside the menu, the display screen consists of 3 main areas

a) Input: Here, the loaded graphics file is shown
b) The output window: Here, after starting the conversion process (with F5 or E-

dit/Convert
c) The statistics/parameter window: All selected parameters and the data about the cur-

rent output data (if any) are showed.

The user interface:

1) With drag and drop (if switched on in the preferences) or using File/Open you load

2) Then, at
 not need to do this parameter selection

again if you want to stick with the last choice. Hint: You will be able to see most of
these selections at the statistics windows and you may also click on these directly.

3) With F5
4)

will then be included during
into your program code (this

By this, you do not need to

(see picture beneath).

file. For this, you select

Alternatively, you may save the

and you may then paste the , you copy these to the clipboardWith right mouseclick and

such a binary file will be included

page 44 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Copy
converted data into you program editor. After changing a parameter, you need to start the
conversion process again – the output window will not be updated automatically.

output data to a binary or a .h
File/Save

As after the conversion finishes
and then choose either a binary
file or a header-file for C (xxx.h)

include hundreds of code lines

compilation).

At Bascom Basic for example,

with the command $INC:

Example:

This one line would be the same as hundreds of Data-lines preceeded with the label “T1a”.

is yellow, needs to be commented or deleted

dditional information that we do not use

page 45 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Necessary manual work on the output data
The output data will contain some a in our software
routines yet. You might go and change these routines for using those or you go and delete
these information from output data of GLCD_Convert.
See the next code fragments. Everything which
by you. Green means: is already commented by GLCD_Convert.
Important for the C-Array: The array size needs to be adapted after this (example: 8715). As
you delete 3 values, you need to reduce the array size by 3 (then 8712).

Example for a C-Code:

/*
Graphics data created with GLCD_Convert developed by Konstantinos Halakatevakis.
Looking for cool displays? Visit "http://www.Display3000.com"
*/

const unsigned int Table_colortest1-32gif[32] PROGMEM = {
0xCE5F,
};

/* Color mode byte:

Bit 0: 0 --> Compression on
 1 --> Compression off

Bit 1 - 4: 0000 --> 65536 colors
 0001 --> 4096 colors
. etc.
*/

const unsigned int colortest1-32gif[8715] PROGMEM = {
8715 needs to be corrected to 8712 after removing the three blue marked values
/* Image dimensions: (W x H) */
0x0084, 0x0084,

/* Color mode */
0x0306,

/* Data */
0x0101, 0x0101,

The output of the Basic data also needs a manual deletion of the size-data (an array size as
in C is not available).

'Image color table size: 32
Table_colortest1-32gif:
Data &hCE5F%,

'Color mode byte:
'
'Bit 0: 0 --> Compression on
.

colortest1-32gif:
'Image size (including dimensions, color mode and palette colors): 8715
'Image dimensions: (W x H)
Data &h0084%, &h0084%,

'Color mode
Data &h0306%,

'Data
Data &h0101%, &h0101%, &h0101%,

Important ! Please read!

beginning of this file to or
if the color table shall be saved as

color table shall be saved to the Save as), this option defines if the
file with output data (Filee.g. GIF). If you save a have loaded a file with indexed color table!

you work in palette mode and if you This is only for interest, if

(right now, only the latter is supported

MSB & LSB) or 1 bit value (word).
should be 2 x 8 bits value (2 Bytes

The most important settings being
The parameters !

Mode Palette does need much less memory but, it is a
more quickly if no calculation or extra code is needed (just read and send).

bit slower due to the extra
code for reading the color table.

color table (usually GIF-Format).
you load a graphic file with an indexed

 only works correctly, if

monochrome graphics in this manual.

blue and white or red and yellow etc...).
We will not go into detail about

and do the change in the software:

graphic as a JPG-File

Basically, there are three different main

page 46 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Three different conversion modes

color modes, which you can select at the
top menu line. These three modes are:
Color / Monochrome / Palette
Color creates „normal“ data of a color-

Monochrome creates data for a mono-
chrome file (black and white or if you need

Palette: This mode works with a maximum
of 256 colors out of the complete 65k
color palette. More about this at page 34.
The mode Palette

Bascially the following facts should be known: The mode Color can be displayed

mentioned here:
Color table representation: Here you
select, if the entries in the color table

Output data pixels per byte: This de-
fines if (in palette mode only) more pix-
els may be placed in one byte or if each
pixel shall get a complete individual byte

by our software routines).

Save options for color table:

 an own individual file (this makes sense if several pictures
are using the same color table and then might share the color table thus saving memory).

job better than a tiny tool. they have years of experience. To do this
They use algorithms that are highly developed and

 Again, for this, it would be better do with a
program like Adobe Photoshop & Co.

draw with a graphic editor. Sorry, lines, pixel, etc... you better

Resizing / Cutting of graphic files:
better. Some of these functions are: graphic program is able to do much

t make sense to offer functionality that any

 Here, you define if, by saving a bi

or 16 bits (Word) in the output window.
data shall be formatted as 8 bits (Byte)

The best used combinations are:

page 47 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

The parameters II

Output Format: Defines if you would like
to format the output for C, for Bascom
Basic or any other user defined pro-
gramming language.

Data representation: Defines, if the pixel

(Important – memorize this !)

Color mode Number of

colors
(Menu Color)

Compression
(Menu Common)

Data
Representation

(Menu Common)

Color table
Representation

(Menu Palette)
Color 65536 An Word Don’t care – not used

Color 65536 Aus Egal Don’t care – not used

Color 256 An Byte Don’t care – not used

Color 256 Aus Byte Don’t care – not used

Palette Don’t care –
not used

An Byte Word

Palette Don’t care –
not used

Aus Byte Word

Save options for .bin file: nary file, the information regarding
size and color mode will be present in this binary file or not. It makes sense to write these
informations to the file if you create a subroutine which shall work with any binary file,
without knowing upfront of size and color format.

Options, the GLCD_Convert tool does not offer:
This tool is not a graphics editor. It does no

 You need to offer our tool exactly the file size you want
to use.
Drawing:
Creation and/or modifiying of color tables:

®

The (usually) most efficient mode is:
GIF-file used!! (up to 256 colors);
Menu Palette: Color table representation: Word
Menu Palette: Output data, pixels per byte: 1 pixel per byte
Menu Common: Data representation: Byte
Menu Palette: Compression: Yes

page 48 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Overview – how to get bitmaps into the microcontroller?

4) Adapt output data to our
library (delete size informa-
tion and change array size)

5) Now compile and write the
program to your microcon-
troller. Ready.

1) resize / cut graphics in a graphics program
to a size of 176x132 pixel (or less) and save
as JPG or GIF (eventually with a reduced
number of colors)

2) Use GLCD_Convert.exe from
our CD to convert these graphics
files into program data

3) Copy&Paste these data in your
program

. To read these data out, you

problems if, you have more

without compressing – a maximum of 23,232 bytes.
sible quality reduction and the graphics then needs – even

no way around this as the internal pointer of the compiler is being used as signed integer,

graphic in two halfs. , you must divide your
ve 46,464 bytes (132 x 176 pixels x 2 bytes). If

page 49 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Some hints from personal experience

Bascom-programmers take care: Some older editions of Bascom basic do have prob-
lems when large areas of data are used. You then shall read our FAQ at page 67.

C-Programmers take care: With WinAVR you are not able to use arrays of a size larger
than 32.768 Bytes. A full size picture would ha
you want to work in full color mode (65K color)
You need to convert them separately and to set up two different arrays for them. There is

thus not being able to point to any number larger 32,768.
Our hint: Use GIF graphics with 256 colors (or less). Usually this is absolutely OK to display
anything you like without any vi

Also the total amount of all bitmap data and other flash constants needs to be taken care of
with WinAVR. You will run into then 64 KByte of bitmaps –
more details on this at page 16.

Bascom: Alternative to zillions of Data-lines
To keep the code short you may save a binary file from GLCD_Convert instead using big
bunch of data-lines.
Using the command $INC Label, nosize, “filename.bin“ at the end of your
program (do not use this in the middle of the program – data should always be placed at the
end) you inform Bascom, that it should include this file during compiling and that this should
be treated as many lines of data statements.
Example $INC Nasa-L, nosize, “D:\Temp\Nasa-L.bin“ adds the file Nasa-
L.bin use the same commands as before
Restore Nasa-L and then read READ or alternatively: Lookup

Bascom: Usage of many color tables
When using the command Lookup, you can unfortunately not pass the label over to this
command. For this reason, our code is expecting the label colortable for this (subroutine
„Get_indexed_color“). You need to change this label if you want to use a different name for
your color table. If you need more than one color table you need to change the code e.g.
with “Select case” to get the data from the correct color table.

from the left, center or right.
will differ depending if you look on the displayIn landscape mode, the picture contrast etc...

e display from the top (12 O'clock orientation)

bottom (6 O'clock orientation) during testing

Depending on your needs it might be necessary

page 50 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Changing the output direction (rotating the display)

that the display needs to be mounted by 90°
or 180°. Luckily the display offers some basic rotation functions which will allow us an easy
programming.

With the command Orientation = you switch to a different orientation with the next
output. This is always only valid for new outputs, the content, currently showed at the dis-
play will never be changed.
Portrait is the standard mode for module D071

With Portrait180 the content will be turned by 180° – this is the default mode for
module D072 (if the switches shall be below the display).

Landscape is the default mode for module D073, as the switches there are located at the
longer side of the display.

Landscape180 will rotate the landscape by 180°.

Of course any of our modules can work with any output direction.

Comment:
Also take the output quality into account when you choice of the output direction of the
module. The quality of the picture is, as usual with TFT displays, depending of the viewing
angle. Always consider the final mounting situation of your module. E.g. if you work with
module D072 you look to the display from the
because the module lays in front of you on the table. If you mount this later to a wall in 40
inch height (1 meter) you then look to th
which will give you different display quality. It might be that you then notice that you would
better buildt in the module turned by 180° (then you just need to change the orientation
parameter in our software).

page 51 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

The following display is valid if you use our subroutines which will do all needed
calculation. The black stripe represents our display connector (not the silver
stripe at the display).

Usage in Portrait mode Usage in Landscape mode
(Orientation = Portrait) (Orientation = Landscape)

Usage in rotated Portrait mode: Usage in rotated Landscape mode:
(Orientation = Portrait180) (Orientation = Landscape180)

0,0
X-Axis

Y-Axis 0,131

Full display
Landscape

x2, y2

x1, y1

X-Axis

Y-Axis

0,0

131,175

Output
window

Full display
Portrait

x2, y2

x1, y1

Output
window

175,131

175,0

0,0
X-Axis

Y-Axis 0,131

Full display
Landscape

x2, y2

x1, y1

X-Axis

Y-Axis

0,0

131,175

Output
window

Full display
Portrait

x2, y2

x1, y1

Output
window

175,131

175,0

disavantage: this is much slower than
as you can decide which port to use. The onlyby the software. The advantage: very flexible

buildt in hardware – then, this is simulatedShiftout is similar to SPIOut, but is not using any

need to split our color
the other. SPI ports are predefined and cannot values into 2 bytes and pass then one after

does only allow 1 Byte, we always

With this command, the given byte

from 0 to 7, thus each individual
variable A can be queried by means ofIn Bascom, the bit No. x of the

vertheless, there are three instructions used in

programming languages or for other µcontroller.any programmer in short time into other

page 52 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Conversion of the software to other systems or other programming
languages

Our program code was well documented and should be able to be rewritten therefore by

We tried to use no special instructions, ne
most sample programs, which are not offered by all systems and need a closer description.
Besides we already reprogrammed them for using these commands at other environments.

Bit inquiry

 A.x (this can also be
used to set a bit). With a loop bit of a byte variable can be
queried. Programming languages, which do not offer this instruction, could use the AND in-
struction for substitution.

You may use the AND command with the value of the demanded bit.
Y= A AND 2 results in 0 only if bit No. 2 is not set. Y = A AND 32 is 0 only if bit No. 6
is not set.

Set, RESET
Set X is identical to X=1
RESET X is identical to X=0

SPIOut

 is automatically transferred to the display using the hard-
ware SPI buildt into the ATmega (the controller is taking care of setting the data and clock
line correctly). As the SPI buffer

be changed.

Shiftout (not used here)

using the buildt in hardware SPI.

After receiving a complete set of commands, the display expects a one (1) at the line CS.

command and every pixel needs 2 transferred The display works in a 16 bits mode, i.e. every

 needs 2 bytes, each pixel

16 Bits-Interface

8 Bits-Interface

of 65.536 colors (16 bits). The color mode needs
defined as a 1 of 256 colors (8 bits) or a 1 ways 16 bits large, the single pixel however can be

pixel or 16-Bits per pixel. Commands will be al-This display works in two modes: 8 Bits per

data) took its time but finally, the display revealed its secrets.

to be defined during the start up intializa-

page 53 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Reference of driving the 2.1“ Display

The driving of the display was determined by us by reverse engineering. Software reverse
engineering is defined as “reversing a program's code (the string of 0s and 1s that are sent to
the logic processor) back into the source code that it was written in”.

We have operated the display in its original application and logged the complete data traffic
between display and its hardware. The analysis of this data (we are talking of several hun-
dreds of Mbytes where we had to split important command data from non important pixel

The serial interface of the graphics controller

tion and cannot be changed (except by running a new LCD_Init sequence) during the regular
operating of the display.

Each command needs one byte. The pixel colors are predefined
(RGB 332 as explained in our color modes previously).

bytes.

Command / Parameter
The display distinguishes between the two different modes when receiving data

• Command mode
• Pixel mode – burst mode

The command mode is indicated by a 0 at the line DC (Data/Command) during
the data transmission. The display therefore interprets the incoming data as commands
to be executed. If a High (1) is set on line DC, the display interprets the incoming data as
pixel data.

Only then the data will be executed.

on and the beginning of the next section areas, each showing 16 µs. The end of one secti

the remaining 23,228 to your imagination.

With the first 6 comands, the output window is

65K-color-mode (2 bytes per pixel).

showing each 16 µs – the time scale helps as (marked with the blue numbers 1- 4) are
words) of data gatherd in a time frame of approx. 64 µs; four areas

of data we have read in with out logic analyzer.At the following picture, you see a small amount

page 54 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Logic analyzer screens

Here you see 20 bytes (10

guidance. The triggering (start of the record) starts with T=0 µs. The display is working in

This sequence shows the beginning of the command LCD_CLS, the clear screen subroutine.

set to 131,175 (&h83, &hAF) (see also page
20 in this manual to get detailed information about setting an output window) and is then
followed by 23,232 times a white pixel (&hFFFF). We show only 4 of these pixels and leave

☺

To avoid any confusion by looking at this picture: The time scale of 0 to 64µs is divided in 4

will show some overlapping. Just look at the time scale of each section – this helps.

means, the display get the data withoutThe pixel mode is realized as a burst mode, which
the need of information on any further line. This speeds up transmitting the data.

mand data and pixel data.
for the display to make difference between com-

page 55 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

(Zoom):

The picture above is a zoomed area of the picture of the last page (at position 34 µs). After
finishing sending the commands for opening the window, the short peak at line CD (marked
with “A”) tells the display that this command now shall be excecuted. The Data/Command
line (DC) was high all the time – the information for the display that a command is being
transfered. As soon as DC goes to low (marked with “B”) the display exists the command
mode and interprets the following data as pixel data.

The state of line DC therfore is important

At this example you might see which potential is in an optimization of the code. Theoreti-
cally the display can work with the data without any break. As of the data preparation of our
software, these pauses are not avoidable but might be shortend through optimization.

A

B

 35 full frames per second -
FFh): 10 pixels are transferred in approx 12.2µs; this makes one full picture in 28ms or theo-
Pixeloutput at high speed and without any sing

bytes and transfer them through SPI one
after the other. First the most significant byte (MSB), then the least significant byte (LSB).
mands and 2-Bytes Pixel colors into two single

split all 2-Bytes com-For this reason we must buffer, we can only transfer 8 bits at a time.

rdware SPI. Usually,

overhead. For this reason, we are using the hardware SPI on our modules. How does the

Like many µcontrollers have a hardware SPI included, it makes sense to use this interface,

page 56 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

as its send the data automatically by an included piece of hardware without any software

hardware SPI works: We place a byte into the SPI buffer and then the bits on the data line
and the signals on the clock line are produced automatically by the ha
this is much faster than software.

Comment: As the serial interface (SPI) of a 8-Bit-Microcontrollers only offers a 1 Byte

Then here is a picture of the original application. This would be perfect: regarding speed:

le pause (here white pixel, therefore always

ratically ☺ (the display can work with a pixel clock of up to 13
Mhz).

problems, if you run the display on 40 microcontroller. you will probably encounter

The complete clock cycle needs to be at If you are having problems check the timing,
Timing of the signals / clock line versus data line

page 57 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

least 70ns and the single clock peak at least 25ns high and at least 25ns low. There is no
maximal length of a clock cycle known therefore you do not have to take about this if you
are running a slow microcontroller. Only if you are running a very fast microcontroller (>30
Mhz) you might need to slow down some output procedures.

Also take care of the cable length when you want to mount the display in distance of the

inch cables (one meter) with a clock cycle of 70ns. Try to avoid any cable length of more
than 20 cm (4 inch) and use a shielded cable.

during our tests, that 75ms is needed to en-(you may shorten this break, but we found out

Even with a lot of effort, we
Initializing (65.536-color-mode – 16 bits per pixel)

each action with a break of approx 75 ms

EF , 00 , EE , 04 , 1B , 04 , FE , FE , FE , FE , EF , 90 , 4A , 04 ,

page 58 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

The display commands:

were not able to isolate the different initializing commands of
the display and to assign them to single actions. Even as we tried hard by sending all possible
combinations: we also did not find out any other commands which would have an effect to
the display.

Until this might be clarified some day, the sequence for initializing the display needs to be
seen as a whole block.

1) After powering the display up approx. 300ms break is needed before a low at the
Reset-line does a hardware reset.

Then several lines needs to be set and reset,

sure always a proper initializing):

High at CS (then a 75ms break)
Low at Clock (then a 75ms break)
High at DC (then a 75ms break)
High at Reset (then a 75ms break)

Then the initilaizing sequence follows, starting with FDFDh. This is probably the power up
sequence of the display. After this sequence, a break of 75ms is a must (not much longer,
not much shorter).

Then the following initializing commands follows (line DC is always high):

7F , 3F , EE , 04 , 43 , 06

25-75 ms break

EF , 90 , 09 , 83 , 08 , 00 , 0B , AF , 0A , 00 , 05 , 00 , 06 , 00 ,
07 , 00 , EF , 00 , EE , 0C , EF , 90 , 00 , 80 , EF , B0 , 49 , 02 ,
EF , 00 , 7F , 01 , E1 , 81 , E2 , 02 , E2 , 76 , E1 , 83 , 80 , 01 ,
EF , 90 , 00 , 00

EF, 90, E8, 01 switches to the 8 bits-mode
EF, 90, E8, 0F switches to the 16 bits-mode

 now expects the colors in RBG - for you,

pixel.
thus 256 colors per8 bits per pixel mode –

 switches the display to the 16 bits mode as explained in this manual.

mode – 8bits per pixel) Alternate initializing (256-color-

page 59 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

EF , 00 , EE , 04 , 1B , 04 , FE , FE , FE , FE , EF , 90 , 4A , 04 ,
7F , 3F , EE , 04 , 43 , 06

25-75 ms Pause

EF , 90 , 09 , 83 , 08 , 00 , 0B , AF , 0A , 00 , 05 , 00 , 06 , 00 ,
07 , 00 , EF , 00 , EE , 0C , EF , 90 , 00 , 80 , EF , B0 , 49 , 02 ,
EF , 00 , 7F , 01 , E1 , 81 , E2 , 02 , E2 , 76 , E1 , 83 , 80 , 01 ,
EF , 90 , 00 , 00

The sequence 7F, 3F
7F, 1F however will switch the display to the

The sequence 49, 02 can be replaced by:
49, 03: inverse color or
49, 42; instead the bit sequence RGB, the display
this mostly will be of very little interest.

Switching the color mode after the initialization:

Switching the color mode in runtime might make sense if you need to realize a very quick
output where it is no problem to live with the limitation of the 256 color mode (RGB332).

Switch Power Off.

The Switch Off sequence (line DC is at high level):

to save power at battery powered devices).power booster by the microcontroller (useful
Switch Off the display electronicaly and

Off sequence first. Starting mid of March 2008 about this before, you shall send the Switch

will enhance its life span. If A user Controlled Switch Off of the display

page 60 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Switch off sequence
you switch off and on

the display (or the complete microcontroller board) very often and if you are able to know

our modules D071 and D072 will offer an option to

If you want to wake up the display after sending the following sequence, you need to call our
initialization routine Init_LCD.

EF , 00 , 7E , 04
Wait 50 ms

EF, B0, 5A, 48, EF, 00, 7F, 01
Wait 60 ms

E2, 92
Wait 90 ms

E2, 02
Wait 60 ms

EF, B0, BC, 02, EF, 00, 7F, 01
Wait 25 ms

80, 00
E2, 04
Wait 25 ms

E2, 00
Wait 25 ms

E1, 00
Wait 25 ms

EF, B0, BC, 00, EF, 00, 7F, 01
Wait 90 ms

of our display commands. With EF90h 0000h, the

With the command EF90h 0040h, the screen will

command sets to define the output
use them all in our software: window and the output direction – we

For all activities of the display, there are

X-position as a parameter

page 61 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Define output window (where to write pixels)

Introduction EF08h: this starts a command sequence with followed parameters

command 18h – Orientation; it follows the parameter for the output direction (1 Byte)

00h Portrait
03h Portrait rotated by 180°
05h Landscape
06h Landscape rotated by 180°

command 12h –window: start X, followed by the X-position as a parameter (1 Byte)
command 13h –window: start Y, followed by the Y-position as a parameter (1 Byte)
command 15h –window: end Y, followed by the (1 Byte)
command 16h –window: end Y, followed by the Y-position as a parameter (1 Byte)

Switch the display to white or black screen (without loosing the screen content)

become completely dark, with EF90h 0080h
the screen will become completely white.

By using this command, the display RAM will not be deleted and is even changeable during
this black or white-mode: you may use all
display RAM will become displayed again – including all changes made by you in the mean-
time. This command is usable if you do not want to show the user how the screen will be-
come updated. Then you switch it white or black, make all your changes you want and then
you switch it back – all data will become visible at once.

Usage in Bascom Basic
D_data_out = &HEF90%
Gosub Lcd_send_dbcommand
D_data_out = &H0040%
Gosub Lcd_send_dbcommand

… Screen is black …

To restore the content:
 D_data_out = &HEF90%
Gosub Lcd_send_dbcommand
D_data_out = &H0000%
Gosub Lcd_send_dbcommand

your eye to realize a scrolling effect.
cycle, otherwise the screen moves to fast for

pixels large area you need

For complete scrolling of an area of 50 pixels (32h)

e screen, you may also

en will be moved by 32 pixels (20h) upwards

page 62 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Set vertical offset / scrolling

With the command EF90h 11xxh the display will be informed about a needed offset (xxh).
For example: if you send EF90h 1120h, the scre
(at mode Portrait180 it moves downwards, in mode landscape it moves to the right or to
the left). With a loop and –important – a short waiting period of 2ms, you can realize some
scrolling. Important: With this command all coordinates will move too: 0,0 will not be the
upper left corner anymore – it is moved by the offset. Moving the screen is possible by a
maximum of 176 pixel (thus, the parameter may contain values between 00h and B0h).

The screen content will not move
out of the display (invisible) but will
reappear at the bottom of the
screen.

This command sets an absolute off-
set. This means you do not move
the screen content by a number of
pixel – you move the screen to a
specific position.

Example: After moving the screen to
position 10, a new call with position
11 (0Bh) will move the screen only
by one pixel. To bring it back to the
default position, you always need to
use the parameter 00h.

Scrolling / Offset of a predefined area in-
stead the complete screen

Instead moving the complet
move only an area of the screen. Remark: this
area always will use the complete horizontal line.
The command sequence for this is:
EF90h, 0F start, 10 size, 11 offset

from position 40 (20h) exactly 1 time (for a 50
to move by 1 pixel 50

times), the code beside will be needed:

Remark:
1) For scrolling you shall always use a short wait

2) Scrolling in portrait mode is only possible in the vertical direction and in landscape mode
only in horizontal direction.

Usage in Bascom Basic:
D_data_out = &HEF90%
Gosub Lcd_send_dbcommand
D_data_out = &H1120%
Gosub Lcd_send_dbcommand

… screen will be moved by 32 pixel (20h) …

To move it back:
 D_data_out = &HEF90%
Gosub Lcd_send_dbcommand
D_data_out = &H1100%
Gosub Lcd_send_dbcommand

D_data_out = &HEF90%
Gosub Lcd_send_dbcommand
D_data_out = &H0F20%
Gosub Lcd_send_dbcommand
D_data_out = &H1032%
Gosub Lcd_send_dbcommand
D_data_out = &H1100%
For X = 1 To 50
 Incr D_data_out
 Waitms 50
 Gosub Lcd_send_dbcommand
Next X

How to use in Bascom:

… Display scroll within
this range…

If you want to use our subroutine LCD_Window, you might ignore this page totally, as this
subroutine does all calculation for you (then better got to page 51). For your orientation:
the black stripe shows the position of our display connector.

the native display orientation.Following, we will provide you with all information about

page 63 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Coordinates and output direction
Comment: If you use our software subroutine LCD_Window you better use the information
on page 51 as we do there all recalculation for you. Then, if your rotate the display and if
you then use the correct Orientation setting in the code, the upper left corner is always the
reference for X=0 und Y=0.

Usage in portrait mode: Usage in landscape mode:
(Orientation = Portrait) (Orientation = Landscape)

131,0

X- Axis

Y- Axis
0,175

Full display
Landscape

y2, x2

x1, y1

X- Axis

Y- Axis

0,0

131,175

Output
window

Full display
Portrait

x2, y2

y1, x1

Output
window

131,175

0,0

131,0

0,175

page 64 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Usage in rotated portrait mode: Usage in rotated landscape mode:
(Orientation = Portrait180) (Orientation = Landscape180)

0,0

131,175

Full display
Landscape rotated by 180°

y2, x2

x1, y1

X- Axis

Y- Axis

0,0

Full display
Portrait

rotated by 180°

x2, y2

y1, x1
Output
window

Y-Axis 131,0

Output
window

131,0

131,175

X- Axis

ght also be a timing problem). In this case,
ble factors impair the usage. Then, the display works for a

Nevertheless, it is possible that are actually non-critical. The signals of the microcontroller

c analyzer, we would'nt ever be able to

ùµcontrollers you might think about purchas-Check. Hint: If you plan to use more often with

speed of >30 Mhz (below, it is very

fferent microcontroller or another pro-

page 65 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Possible problems and their solutions:

Nothing is happening; the display does not show anything.

1) Did you rewrite the program for a di
gramming language?
Examine all outputs and also the speed. Eventually you are sending the data too fast. Try to
throttle the output rate (insert short waiting loops) if you are using a microcontroller with a

inlikely that the speed is too fast).

2) Did you define the correct port in your program?
Check

3) Did you assign the port lines of the display correctly and did you solder the
lines correctly (if not using our ready to run controller boards)?

ing a logic analyzer. Such a device will save you many many hours of work as you never need
to guess again what is happening. Without a logi
discover how to drive the display.

4) Bascom: Displaying graphics works fine, but displaying text does not work
You did not use the needed selections in the compiler settings of HWSTACK; SWSTACK
and FRAMESIZE when using Bascom (Menu: Options, Compiler, Chip). See the com-
ments at the beginning of each of our sample programs. You need the following settings with
our sample programs:

HWSTACK = 64
SWSTACK =128
FRAMESIZE =16

If you do changes (especially when you use “Call” or “Gosub” you might raise these num-
bers (see Bascom-Help)

Hint: you might include the lines (with “$”)

$HWSTACK = 64
$SWSTACK =128
$FRAMESIZE =16

at the beginning of your programs, so these values are set automatically during compilation.

5) Electrical/static disturbances

longer cords or other unfavora
while and does not react then any longer (that mi
you should either use shorter cables (max 20 cm), or with necessary larger lengths use
shielded cables.

" command takes about 128 Bytes of memory. If you use

This is of course not the most way, it is easy to understand.

page 66 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Also a good strategy for devices which may run a long time: refresh the complete display
content (eventually including initialization) in frequent periodics (e.g. once per hour or once
per day).

6) With bright sunlight the display wents crazy
The silver shining part at the top of the display is a chip. Bright light might disturb it from
working correctly. You may darken this with a frame or with a stripe of tape.

My program needs so much memory.

Hints for decreasing memory requirement.

1) We did write our code in a
efficent code as we proposed, that understanding the code is more important for you than
getting effective but cryptic code.

2) Bascom Basic: Using the Call-Statements needs a lot of memory due to turning over
the many parameters. Each "Call
these call staments very often memory may run short. We suggest 2 alternatives:

a) Reduce using the Call-statements by trying to share code segments with other parts of
your program or

b) use the command Gosub instead Call. There is one disadvantage connected then: With
Call you pass the content of variables or static content to the subroutine. You cannot do
this with Gosub. This means, you have to set all variables the subroutine needs manually
before you call the subroutine. An example:

Instead:
Call Lcd_print("Hello world" , 1 , 1 , 1 , 1 , 1 , Dark_red , Yellow)
you need to call the subroutine LCD_Print (after doing some changes to the program) with-
Gosub LCD_Print.

The needed parameters like LCD_Text, XScale, YScale, Fontnr etc. now need to be
set by yourself before the Gosub. This might then look like:

data such as font data or graphics data.4 Kbytes size which can also be used for often used
e) The ATMega beside its flash memory for your program and data, also has a Eeprom with

 GLCD_Convert and the decompression algorithm

filled up and there is not space left for any software code.
like that, the memory of an ATMega128 iscolor information. If you want to use 3 pictures

program memory as each pixel needs two bytes colors does need more than 46.000 Bytes

ps always need more memory as you need to

means, you will win approx. 100 Bytes of memory for each eliminated
2-4 bytes per usage. This

program thus the output of Often, many variables need to be set/used anyway in your

page 67 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

the display only needs the Gosub command which needs only
Call statement.

Hint: For the above mentioned modification, there are two changes needed:

a) Change the header subroutine "Sub LCD_Print…" to an ordinary label
“LCD_Print:”

b) Change the end of the subroutine from „End Sub“ to „Return“
c) Delete the line "Declare Sub LCD_Print ... " at the beginning of the program.
d) Change all occurencies of “Call LCD_Print” to “Gosub LCD_Print” and

take care that all needed variables are set before the Gosub.

3) Graphical output of icons or other bitma
place the bitmap data together with the program memory. A full size picture with 65,536

Strategies for saving memory space:

a) Include small graphical elements and use them often. E.g. a button can be set up as a de-
fault button without any text in it. You then use this button all the time and you then write
„Exit“ or „OK“ or whatever into the button using the routine LCD_Print.

b) Use only graphical data with indexed colors and reduce the number of colors if possible.

c) Use monochrome graphics if possible and set up a routine which shows them in the
wanted two colors (does not have to be black and white, the same graphical element can
also be red and white at one time and then green and white later).

d) Use the compressing feature of our tool
of our software. You may then compress data easy by 50% and more. Hint: The less colors
you are using in your graphics the better usually the compression works as the chance is
larger that a color repeats.

Lcd_text = "Hello world"
Lcd_posx = 1
Lcd_posy = 2
Fontnr = 1
XScale = 1
YScale = 1
Lcd_fcolor = dark_red
Lcd_bcolor = yellow
gosub lcd_print

hardware SPI only, another is updating only the
e. One technique to speed up the general output is using

need to use the other makefile on our CD want to use our serial or USB programmer, you

ship on our CD. There is nothing special with

Test1:
– probably it helps Bascom structuring the data.

etc...). You will never use this label statements. Just insert a

 creating errors during compilation. Our first
Bascom had a bug in older versionn if you placed

page 68 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Bascom does not compile correctly anymore after I inserted a lot of data state-
ments

 too many data statements. It was not possi-
ble to insert a lot of data statements without
advise: updates are always free with Bascom (for registered users). Go to
www.mcselec.com, log in with your user data and download the latest release.

But there is also a workaround: Just place a label after approx. each hundred lines of data

new line and set a label (

The enclosed C-Compiler gives compile errors when I try to compile your sam-
ple code

Please use for a first test only the make file we
this makefile, but we know it works.

I cannot program the code to my ATMega module with the C-compiler on the
CD.
Please use for a first test only the make file we ship on our CD. This is preconfigured for a
parallel programming interface (as our item E-H003a, which is STK-200 compatible). If you

instead. Then:
1) rename the file Makefile to Makefile-parallel
2) rename the file Makefile-seriell to Makefile
Both files are identical but the information of the used programmer. If these are not con-
nected to LPT1 (parallel) or COM1 (USB / serial) you need to change this port to your con-
figuration at the file makefile.

Writing to the display takes a relatively long time
Well, a lot of data needs to be transferred to the display. You will not be able to watch a
movie at this display but 5-10 frames per second will be possible, depending on your micro-
controller and the used softwar

 part of the display which changed. It might
also make sense to rewrite parts of the code to assembler if you really need to speed things
up.

cleared to you perhaps later)

us more than 100 hours to write (and another

page 69 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Then another request: Just this manual took
20 hours to translate into English). After this long time working on such a project one often
does not see even obvious faults or inaccuracies anymore.

Please inform us:

• If we have confused you with statements in this programming manual (even if this was

• If we used a totally wrong translation somewhere
• If there are questions left unanswered
• If there are wrong or ambiguous statements
• If you think that we did leave out important aspects

We then will integrate these into the further development of the manual and also provide
you with a copy.

By the way: The software also will be developed further. If you have ideas for
further developments, tell us and it might make it into the code.

Thank you very much in advance!

page 70 Manual for 2,1“ TFT – Part # X212 – V1.50
 © Peter Küsters - www.display3000.com

Contact:

Speed IT up
Inhaber Peter Küsters
Wekeln 39
47877 Willich
Germany
Telefon: +49 (21 54) 88 27 5-10
Telefax: +49 (21 54) 88 27 5-22

More informations: www.display3000.com

Author and copyright of manual informations: Peter Kuesters

This document is copyright protected. It is not permitted to change any part of
it. It is not permitted to publish it in any way, to make it available as a download
or to pass it to other people. Offenses are pursued.

